• Title/Summary/Keyword: Etching resistance

Search Result 225, Processing Time 0.024 seconds

Microstructure and plasma resistance of Y2O3 ceramics (Y2O3 세라믹스의 미세구조 및 플라즈마 저항성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.268-273
    • /
    • 2014
  • $Y_2O_3$ ceramic specimens were fabricated from the granular powder, obtained by spray drying process from the slurry. The slurry was prepared by mixing PVA binder, NaOH for Ph control, PEG and $Y_2O_3$ powder. The $Y_2O_3$ specimen was shaped in size of ${\phi}14mm$ and then sintered at $1650^{\circ}C$. The characteristics, microstructure, densities and plasma resistance of the $Y_2O_3$ specimens were investigated with the function of forming pressure and sintering time. $Y_2O_3$ specimens were exposed under the $CHF_3/O_2/Ar$ plasma, the dry etching treatment of specimens was carried out by the physical reaction etching of $Ar^+$ ion beam and the chemical reaction etching of $F^-$ ion decomposed from $CHF_3$. With increasing sintering time, $Y_2O_3$ specimens showed relatively high density and strong resistance in plasma etching test.

Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks (Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작)

  • Kim, Taek-Seung;Lee, Ji-Myon
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.

Nanopyramid Formation by Ag Metal-Assisted Chemical Etching for Nanotextured Si Solar Cells

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.206-211
    • /
    • 2015
  • We investigated the formation of a nanopyramidal structure and fabricated nanotextured Si solar cells using an Ag metal-assisted chemical etching process. The nanopyramidal structure was formed on a Si flat surface and the nanotexturing process was performed on the p-type microtextured Si surface. The nanostructural formation shows a transition from nanopits and nanopores to nanowires with etching time. The nanotextured surfaces also showed the photoluminescence spectra with an enhanced intensity in the wavelength range of 1,100~1,250 nm. The photoreflectance of the nanotextured Si solar cells was strongly reduced in the wavelength range of 337~596 nm. However, the quantum efficiency is decreased in the nanotextured samples due to the increased nanosurface recombination. The nanotexturing process provides a better p-n junction impedance of the nanotextured cells, resulting in an enhanced shunt resistance and fill factor which in turn renders the possibility of the increased conversion efficiency.

A Reproducible High Etch Rate ICP Process for Etching of Via-Hole Grounds in 200μm Thick GaAs MMICs

  • Rawal, D.S.;Agarwal, Vanita R.;Sharma, H.S.;Sehgal, B.K.;Muralidharan, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.244-250
    • /
    • 2008
  • An inductively coupled plasma etching process to replace an existing slower rate reactive ion etching process for $60{\mu}m$ diameter via-holes using Cl2/BCl3 gases has been investigated. Process pressure and platen power were varied at a constant ICP coil power to reproduce the RIE etched $200{\mu}m$ deep via profile, at high etch rate. Desired etch profile was obtained at 40 m Torr pressure, 950 W coil power, 90W platen power with an etch rate ${\sim}4{\mu}m$/min and via etch yield >90% over a 3-inch wafer, using $24{\mu}m$ thick photoresist mask. The etch uniformity and reproducibility obtained for the process were better than 4%. The metallized via-hole dc resistance measured was ${\sim}0.5{\Omega}$ and via inductance value measured was $\sim$83 pH.

Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas (저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션)

  • Shon, Chae-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

A Study on the Formation of Trench Gate for High Power DMOSFET Applications (고 전력 DMOSFET 응용을 위한 트렌치 게이트 형성에 관한 연구)

  • 박훈수;구진근;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.713-717
    • /
    • 2004
  • In this study, the etched trench properties including cross-sectional profile, surface roughness, and crystalline defects were investigated depending on the various silicon etching and additive gases, For the case of HBr$He-O_2SiF_4$ trench etching gas mixtures, the excellent trench profile and minimum defects in the silicon trench were achieved. Due to the residual oxide film grown by the additive oxygen gas, which acts as a protective layer during trench etching, the undercut and defects generation in the trench were suppressed. To improve the electrical characteristics of trench gate, the hydrogen annealing process after trench etching was also adopted. Through the hydrogen annealing, the trench corners might be rounded by the silicon atomic migration at the trench corners having high potential. The rounded trench corner can afford to reduce the gate electric field and grow a uniform gate oxide. As a result, dielectric strength and TDDB characteristics of the hydrogen annealed trench gate oxide were remarkably increased compared to the non-hydrogen annealed one.

The Effects of Etch Process Parameters on the Ohmic Contact Formation in the Plasma Etching of GaN using Planar Inductively Coupled $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각에서 공정변수가 저항성 접촉 형성에 미치는 영향)

  • Kim, Mun-Yeong;Tae, Heung-Sik;Lee, Ho-Jun;Lee, Yong-Hyeon;Lee, Jeong-Hui;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.438-444
    • /
    • 2000
  • We report the effects of etch process parameters on the ohmic contact formation in the plasma etching of GaN. Planar inductively coupled plasma system with $CH_4/H_2/Ar$gas chemistry has been used as etch reactor. The contact resistance and the specific contact resistance have been investigated using transfer length method as a function of RF bias power and %Ar gas concentration in total flow rate. AES(Auger electron spectroscopy) analysis revealed that the etched GaN has nonstoichiometric Ga rich surface and was contaminated by carbon and oxygen. Especially large amount of carbon was detected at the sample etched for high bias power (or voltage) condition, where severe degradation of contact resistance was occurred. We achieved the low ohmic contact of $2.4{\times}10^{-3} {\Omega}cm^2$ specific contact resistance at the input power 400 W, RF bias power 150 W, and working pressure 10mTorr with 10 sccm $CH_4$, 15 sccm H2, 5 sccm Ar gas composition.

  • PDF

Charateristics analysis of the joining of YBCO 2G HTS wire (YBCO 2G 선재간 접합 특성 연구)

  • Chang, Ki-Sung;Park, Dong-Keun;Yang, Seong-Eun;Ahn, Min-Cheol;Jo, Dae-Ho;Kim, Hyoun-Kyu;Lee, Hai-Gun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.741-742
    • /
    • 2006
  • This paper deals with an efficient superconducting joint method between 2G high superconducting(HTS) wire, YBCO coated conductor(CC). Recently CC is one of the most promising superconducting wire due to high n-value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter, persistent current system and cable etc. In most HTS applications, superconducting magnet is used, and it is necessary to joint between superconducting wire to fabricate superconducting magnet system. A CC tape used in this research consists of copper stabilizer, silver layer, YBCO layer, buffer and substrate. Direct joint using soldering method was inefficient due to resistance of copper, then copper lamination is removed by chemical etching method to reduce resistance between CC tapes. Jointed tapes were fabricated and tested. Transport current through jointed area and induced voltage were measured to characterize the I-V curve. Resistance between CC wire using chemical etching was compared with resistance of direct jointed tapes using soldering method in this paper.

  • PDF

Influence of Plasma Corrosion Resistance of Y2O3 Coated Parts by Cleaning Process (세정공정에 따른 Y2O3 코팅부품의 내플라즈마성 영향)

  • Kim, Minjoong;Shin, Jae-Soo;Yun, Ju-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.365-370
    • /
    • 2021
  • In this research, we proceeded with research on plasma resistance of the cleaning process of APS(Atmospheric Plasma Spray)-Y2O3 coated parts used for semiconductor and display plasma process equipment. CF4, O2, and Ar mixed gas were used for the plasma environment, and respective alconox, surfactant, and piranha solution was used for the cleaning process. After APS-Y2O3 was exposed to CF4 plasma, the surface changed from Y2O3 to YF3 and a large amount of carbon was deposited. For this reason, the plasma corrosion resistance was lowered and contamination particles were generated. We performed a cleaning process to remove the defect-inducing surface YF3 layer and carbon layer. Among three cleaning solutions, the piranha cleaning process had the highest detergency and the alconox cleaning process had the lowest detergency. Such results could be confirmed through the etching amount, morphology, composition, and accumulated contamination particle analysis results. Piranha cleaning process showed the highest detergency, but due to the very large thickness reduction, the base metal was exposed and a large number of contaminated particles were generated. In contrast, the surfactant cleaning process exhibit excellent properties in terms of surface detergency, etching amount, and accumulated contamination particle analysis.

A study on Safety Management and Control in Wet-Etching Process for H2O2 Reactions (습식 에칭 공정에서의 과산화수소 이상반응에 대한 안전 대책 및 제어에 관한 연구)

  • Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.650-656
    • /
    • 2018
  • The TFT-LCD industry is a kind of large-scale industrial Giant Microelectronics device industry and has a similar semiconductor process technology. Wet etching forms a relatively large proportion of the entire TFT process, but the number of published research papers on this topic is limited. The main reason for this is that the components of the etchant, in which the reaction takes place, are confidential and rarely publicized. Aluminum (Al) and copper (Cu), which have been used in recent years for the manufacture of large area LCDs, are very difficult materials to process using wet etching. Cu, a low-resistance material, can only be used in the wet etching process, and is used as a substitute for Al due to its high speed etching, low failure rate, and low power consumption. Further, the abnormal reaction of hydrogen peroxide ($H_2O_2$), which is used as an etching solution, requires additional piping and electrical safety devices. This paper proposes a method of minimizing the damage to the plant in the case of adverse reactions, though it cannot limit the adverse reaction of hydrogen peroxide. In recent years, there have been many cases in which aluminum etching equipment has been changed to copper. This paper presents a countermeasure against abnormal reactions by implementing safety PLC with a high safety grade.