Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.4.206

Nanopyramid Formation by Ag Metal-Assisted Chemical Etching for Nanotextured Si Solar Cells  

Parida, Bhaskar (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Choi, Jaeho (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Palei, Srikanta (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Kim, Keunjoo (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Kwak, Seung Jong (Division of R&D, Withlight Co., Ltd.)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.4, 2015 , pp. 206-211 More about this Journal
Abstract
We investigated the formation of a nanopyramidal structure and fabricated nanotextured Si solar cells using an Ag metal-assisted chemical etching process. The nanopyramidal structure was formed on a Si flat surface and the nanotexturing process was performed on the p-type microtextured Si surface. The nanostructural formation shows a transition from nanopits and nanopores to nanowires with etching time. The nanotextured surfaces also showed the photoluminescence spectra with an enhanced intensity in the wavelength range of 1,100~1,250 nm. The photoreflectance of the nanotextured Si solar cells was strongly reduced in the wavelength range of 337~596 nm. However, the quantum efficiency is decreased in the nanotextured samples due to the increased nanosurface recombination. The nanotexturing process provides a better p-n junction impedance of the nanotextured cells, resulting in an enhanced shunt resistance and fill factor which in turn renders the possibility of the increased conversion efficiency.
Keywords
Metal assisted chemical etching; Si solar cells; Nanotexturing; Nanopyramids;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Kim and J. Choi, J. Appl. Phys., 105, 033103 (2009). [DOI: http://dx.doi.org/10.1063/1.3075828]   DOI
2 M. A. Tischler, R. T. Collins, J. H. Stathis, and J. C. Tsang, Appl. Phys. Lett., 60, 639 (1992). [DOI: http://dx.doi.org/10.1063/1.106578]   DOI
3 D. K. Kim, Y. J. Oh, S. H. Kim, K. J. Hong, H. Y. Jung, H. J. Kim, and M. S. Jeon, Trans. Electr. Electron. Mater., 14, 177 (2013). [DOI: http://dx.doi.org/10.4313/teem.2013.14.4.177]   DOI
4 B. Parida, H. Y. Ji, G. H. Lim, S. Park, and K. Kim, J. Renew. Sust. Energ., 6, 053120 (2014). [DOI: http://dx.doi.org/10.1063/1.4897656]   DOI
5 J. Heo, Trans. Electr. Electron. Mater., 14, 160 (2013). [DOI: http://dx.doi.org/10.4313/TEEM.2013.14.3.160]   DOI
6 D. Z. Dimitrov and C. H. Du, Appl. Surf. Sci., 266, 1 (2013). [DOI: http://dx.doi.org/10.1016/j.apsusc.2012.10.081]   DOI
7 S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, M. Husain, and V. Kumar, Sol. Energ. Mat. Sol. Cells, 94, 1506 (2010). [DOI: http://dx.doi.org/10.1016/j.solmat.2010.02.033]   DOI
8 B. Parida, J. Choi, G. Lim, S. Park, and K. Kim, J. Nanosci. Nanotechnol., 14, 9224 (2014). [DOI: http://dx.doi.org/10.1166/jnn.2014.10129]   DOI
9 P. Panek, M. Lipinski, and H. Czternastek, Opto-Electr. Rev., 8, 57 (2000). [DOI: http://dx.doi.org/10.1016/s0921-5107(02)00720-1]
10 J. Y. Jung, Z. Guo, S. W. Jee, H. D Um, K. T. Park, and J. H. Lee, Opt. Express, 18, A286 (2010). [DOI: http://dx.doi.org/10.1364/oe.18.00a286]   DOI
11 Y. J. Cho and H. S. Chang, Phys. Status Solidi C, 9, 2097 (2012). [DOI: http://dx.doi.org/10.1002/pssc.201200093]   DOI
12 J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, Appl. Surf. Sci., 257, 472 (2010). [DOI: http://dx.doi.org/10.1016/j.apsusc.2010.07.014]   DOI
13 C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, J. Appl. Phys., 108, 094318 (2010). [DOI: http://dx.doi.org/10.1063/1.3493733]   DOI
14 F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, Appl. Phys. Lett., 99, 103501 (2011). [DOI: http://dx.doi.org/10.1063/1.3636105]   DOI
15 H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, Appl. Phys. Lett., 95, 123501 (2009). [DOI: http://dx.doi.org/10.1063/1.3231438]   DOI
16 H. Y. Ji, J. Choi, G. Lim, B. Parida, K. Kim, J. H. Jo, and H. S. Kim, J. Nanosci. Nanotechnol., 13, 7806 (2013). [DOI: http://dx.doi.org/10.1166/jnn.2013.8119]   DOI
17 H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, and J. Yuan, Appl. Surf. Sci., 258, 5451 (2014). [DOI: http://dx.doi.org/10.1016/j.apsusc.2012.02.033]   DOI
18 J. Oh, H. C. Yuan, and H. M. Branz, Nature Nanotechnol., 7, 743 (2012). [DOI: http://dx.doi.org/10.1038/nnano.2012.166]   DOI
19 K. S. Do, M. G. Kang, J. J. Park, G. H. Kang, J. M. Myoung, and H. Song, Jpn. J. Appl. Phys., 52, 092301 (2013). [DOI: http://dx.doi.org/10.7567/jjap.52.092301]   DOI
20 B. K. Nayak, V. Iyengar, and M. C. Gupta, Prog. Photovolt: Res. Appl., 19, 631 (2011). [DOI: http://dx.doi.org/10.1002/pip.1067]   DOI
21 M. Moreno, D. Daineka, and P. R. I Cabarrocas, Sol. Energ. Mat. Sol. Cells, 94, 733 (2010). [DOI: http://dx.doi.org/10.1016/j.solmat.2009.12.015]   DOI
22 C. Battaglia, K. Soderstrom, J. Escarre, F. J. Haug, D. Domine, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, Appl. Phys. Lett., 96, 213504 (2010). [DOI: http://dx.doi.org/10.1063/1.3432739]   DOI
23 P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, Sol. Energ. Mat. Sol. Cells, 90, 2319 (2006). [DOI: http://dx.doi.org/10.1016/j.solmat.2006.03.005]   DOI
24 D. Z. Dimitrov, C. H. Lin, C. H. Du, and C. W. Lan, Phys. Status Solidi A, 12, 2926 (2011). [DOI: http://dx.doi.org/10.1002/pssa.201127150]   DOI
25 Z. Huang, N. Geyer, P. Werner, J. D. Boor, and U. Gosele, Adv. Mater., 23, 285 (2011). [DOI: http://dx.doi.org/10.1002/adma.201001784]   DOI
26 M. A. Green and M. J. Keevers, Prog. Photovolt: Res. Appl., 3 189 (1995). [DOI: http://dx.doi.org/10.1002/pip.4670030303]   DOI
27 E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, Sol. Energ. Mat. Sol. Cells, 57, 179 (1999). [DOI: http://dx.doi.org/10.1016/s0927-0248(98)00180-9]   DOI
28 J. Choi, B. Parida, H. Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol., 12, 5619 (2012). [DOI: http://dx.doi.org/10.1166/jnn.2012.6306]   DOI
29 J. Choi, B. Parida, H.Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol., 12, 5552 (2012). [DOI: http://dx.doi.org/10.1166/jnn.2012.6400]   DOI
30 B. Parida, J. Choi, G. Lim, K. Kim, and K. Kim, J. Nanomater., 2013, 1 (2013). [DOI: http://dx.doi.org/10.1155/2013/953790]   DOI