Khan, Hidayat Ullah;Sarmin, Nor Haniza;Khan, Asghar
호남수학학술지
/
제36권3호
/
pp.569-596
/
2014
In several applied disciplines like control engineering, computer sciences, error-correcting codes and fuzzy automata theory, the use of fuzzied algebraic structures especially ordered semi-groups and their fuzzy subsystems play a remarkable role. In this paper, we introduce the notion of (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy subsystems of ordered semigroups namely (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy generalized bi-ideals of ordered semigroups. The important milestone of the present paper is to link ordinary generalized bi-ideals and (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy generalized bi-ideals. Moreover, different classes of ordered semi-groups such as regular and left weakly regular ordered semigroups are characterized by the properties of this new notion. Finally, the upper part of a (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy generalized bi-ideal is defined and some characterizations are discussed.
Finite field operations have played an important role in error correcting codes and cryptosystems. Recently, the necessity of efficient computation processing is increasing for security in cyber physics systems. Therefore, efficient implementation of finite field arithmetics is more urgently needed. These operations include addition, multiplication, division and inversion. Addition is very simple and can be implemented with XOR operation. The others are somewhat more complicated than addition. Among these operations, multiplication is the most important, since time-consuming operations, such as exponentiation, division, and computing multiplicative inverse, can be performed through iterative multiplications. In this paper, we propose a multiplexer based parallel computation algorithm that performs Montgomery multiplication over finite field using redundant basis. Then we propose an efficient multiplexer based semi-systolic multiplier over finite field using redundant basis. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the AT complexity of the proposed multiplier is improved by approximately 19% and 65% compared to the multipliers of Kim-Han and Choi-Lee, respectively. Therefore, our multiplier is suitable for VLSI implementation and can be easily applied as the basic building block for various applications.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권5호
/
pp.1744-1765
/
2014
A client stores data in the cloud and uses remote data checking (RDC) schemes to check the integrity of the data. The client can detect the corruption of the data using RDC schemes. Recently, robust RDC schemes have integrated forward error-correcting codes (FECs) to ensure the integrity of data while enabling dynamic update operations. Thus, minor data corruption can be recovered by FECs, whereas major data corruption can be detected by spot-checking techniques. However, this requires high communication overhead for dynamic update, because a small update may require the client to download an entire file. The Variable Length Constraint Group (VLCG) scheme overcomes this disadvantage by downloading the RS-encoded parity data for update instead of the entire file. Despite this, it needs to download all the parity data for any minor update. In this paper, we propose an improved RDC scheme in which the communication overhead can be reduced by downloading only a part of the parity data for update while simultaneously ensuring the integrity of the data. Efficiency and security analysis show that the proposed scheme enhances efficiency without any security degradation.
본 논문에서는 GF$(2^m)$ 상에서 기존의 비트직렬 곱셈기에 비해 짧은 지연 시간을 갖는 새로운 디지트병렬/비트직렬 곱셈기를 제안한다. 제안된 곱셈기는 유한체 GF$(2^m)$의 다항식기저 상에서 동작하며, D 클럭 사이클마다 곱셈의 결과를 출력한다. 여기에서 D는 디지트의 크기이다. 제안된 곱셈기는 기존의 비트직렬 곱셈기 보다는 짧은 지연시간에 곱셈의 결과를 얻을 수 있고, 비트병렬 곱셈기보다는 적은 하드웨어로 구현할 수 있다. 따라서 회로의 복잡도와 지연시간 사이에 적절한 절충을 꾀할 수 있는 장점을 가지고 있다.
본 논문에서는 GF($2^m$) 상에서 새로운 저복잡도 디지트병렬/비트직렬 곱셈기를 제안한다. 제안된 곱셈기는 GF($2^m$)의 다항식기저에서 동작하며, D 클럭 사이클마다 곱셈의 결과를 출력한다. 여기에서 D는 임의로 선택할 수 있는 디지트의 크기이다. 디지트병렬/비트직렬 곱셈기는 기존의 비트직렬 곱셈기 보다는 짧은 지연시간에 곱셈 의 결과를 얻을 수 있고, 비트병렬 곱셈기 보다는 적은 하드웨어로 구현할 수 있다. 따라서 회로의 복잡도와 지연 시간 사이에 적절한 절충을 꾀할 수 있는 장점을 가지고 있다. 그러나 기존의 디지트병렬/비트직렬 곱셈기는 속도 를 향상시키기 위하여 더 많은 하드웨어를 사용하였다. 본 논문에서는 하드웨어 복잡도를 낮춘 새로운 디지트병렬 /비트직렬 곱셈기를 설계한다.
유한 필드, 즉 Galois 필드는 에러 정정 코드, 디지털 신호처리, 암호법(cryptography)와 같은 광범위한 응용 분야에 사용되고 있다. 이 응용들은 종종 GF(2/sup m/)에서 지수제곱 연산을 필요로 한다. 기존에 제안되었던 방법들은 지수제곱 연산을 반복, 순환적인 곱셈으로 구현하여 계산시간이 많이 걸리거나, 또는 구현 시 하드웨어 구조가 복잡하여 하드웨어 비용이 큰 경우가 많았다. 본 논문에서는 지수제곱 연산을 하는 효과적인 방법을 제안하고 이를 VHDL로 구현하였다. 이 회로는 지수의 각 비트에 해당하는 곱셈 항들을 계산하고 이 들을 곱함으로써 지수제곱 연산을 계산한다. 과거에는 이 알고리즘이 원시 다항식의 근의 지수제곱 연산을 계산하는 데 사용되는 것으로 국한되어 있었으나, 본 논문에서는 이 알고리즘을 GF(2/sup m/)의 임의의 원소의 지수제곱 연산으로 확장하였다.
Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.
최대길이를 갖는 선형 90/150 셀룰라 오토마타(CA)가 패턴생성, 신호분석, 암호, 오류정정 부호에 응용되면서 n차 원시다항식을 특성다항식으로 갖는 선형 CA에 관한 연구가 활발하게 이루어지고 있다. 본 논문은 최대길이를 갖는 다양한 셀룰라 오토마타의 효과적인 생성방법을 제안한다. 특성다항식이 n차 원시다항식인 선형이며 최대길이를 갖는 CA(MLCA)로부터 유도된 여원 CA가 MLCA임을 밝히며 여원 MLCA의 여러 가지 성질들을 분석한다 또한 n-셀 MLCA를 ${\phi}(2^{n}-1)2^{n+1}$/n.개 생성할 수 있음을 보인다.
최근 멀티미디어 통신 시스템에서 유한체는 암호화 알고리즘에 적용되어지고 있으며. 특히 타원곡선 알고리즘 및 리드 솔로몬 등의 에러정정 코드는 유한체 상에서 정의 되어진다. 또한 많은 응용분야에서 유한체 연산의 실시간 처리를 요하므로 유한체 연산을 위한 전용 하드웨어 설계가 필요하게 되었고 이에 대한 많은 연구가 수행되어지고 있다. 본 논문에서는 합성체(Composite Field)를 이용하여 GF($2^8$)의 유한체의 역원을 계산할 수 있는 알고리즘을 제시하고 이를 하드웨어로 구현하여 현재 사용되어 있는 'Itoh and Tsujii' 하드웨어 구조와 면적 및 계산 속도의 성능을 비교 하였다. 또한 AES의 SubBytes 블록에 이를 삽입하여 FPGA 에뮬레이터 보드 상에서 구현하여 성능평가를 통하여 제시된 알고리즘의 우수성을 확인하였다.
터보 코드는 강력한 에러정정 성능 때문에 W-CDMA(Wideband Code Division Multiple Access), CDMA2000 등의 통신 알고리즘에 적용되고 있으며, 여러 분야에서 하드웨어로 구현되어졌다. 여러 가지의 개선 알고리즘과 하드웨어 구조가 제안되어 졌으나 아직까지 하드웨어 면적, 동작속도 및 소비전력 등의 문제가 연구되어지고 있다. 본 논문에서는 하드웨어 면적과 동작속도를 향상시키기 위하여 사후확률 최적화로부터 유도된 MAX-SCALE 알고리즘을 이용한 터보코드 복호기를 설계하였으며, 제안된 회로는 Matlab과 MaxPulsII를 사용하여 성능 측정 및 FPGA 보드상에 구현되었다. 결과적으로 제안된 구조를 사용하여 FPGA에 구현했을 때, 616개의 로직 요소 (Logic Element)를 가지며 MAP(Maximum a Posteriori) 복호 알고리즘에 비해 동작속도는 56.48MHz로 약 40% 향상되었으며, 6.12%의 BER(Bit Error Rate) 성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.