• Title/Summary/Keyword: Embedded Clock

Search Result 103, Processing Time 0.028 seconds

Development of Embedded Board for Construction of Smart Factory (스마트 팩토리 구축을 위한 임베디드 보드 개발)

  • Lee, Yong-Min;Lee, Won-Bog;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1092-1095
    • /
    • 2019
  • In this paper, we propose the development of an embedded board for construction of smart factory. The proposed embedded board for construction of smart factory consists of main module, ADC module, I/O module. Main module is a main calculating device which includes communication pard that allows interface with external device with using industrial protocol and is ported operating system makes board operating into. ADC module takes part in transferring digital signal has converted from electrical signal to the main module from the external sensor which is installed on the field. I/O module is an input and output module which transfers to the main module about a status, alarm, command signal of field device and it has a function that blocks external noises from field device with isolation circuit into it. In order to evaluate the performance of the proposed embedded board for construction of smart factory, it has been tested by an authorized testing institute. As a result, quantity of interacting protocol was 5, speed of hardware clock synchronization was under 10us and operating time of battery without source power was over 8 hours. It produced the same result as the world's highest level.

Time-to-Digital Converter Using Synchronized Clock with Start and Stop Signals (시작신호 및 멈춤신호와 동기화된 클록을 사용하는 시간-디지털 변환기)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.893-898
    • /
    • 2017
  • A TDC(Time-to-Digital Converter) of counter-type is designed by $0.18{\mu}mCMOS$process and the supply voltage is 1.5 volts. The converted error of maximum $T_{CK}$ is occurred by the time difference between the start signal and the clock when the period of clock is $T_{CK}$ in the conventional TDC. And the converted error of -$T_{CK}$ is occurred by the time difference between the stop signal and the clock. However in order to compensate the disadvantage of the conventional TDC the clock is generated within the TDC circuit and the clock is synchronized with the start and stop signals. In the designed TDC circuit the conversion error is not occurred by the difference between the start signal and the click and the magnitude of conversion error is reduced (1/2)$T_{CK}$ by the time difference between the stop signal and the clock.

Recursive Time Synchronization Method Based on GPIO Signal Delay Compensation and EMA Filter (GPIO EMA 신호 지연 보상 및 필터 기반 재귀적 시간 동기화 기법)

  • Kwon, Young-Woo;Nam, Ki Gon;Choi, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • We propose a system time synchronization method between embedded Linux-based distributed control devices by using Transmission Control Protocol (TCP) communication and General Purpose Input Output (GPIO) device. The GPIO signal is used as the trigger signal for synchronization and the TCP communication is used to transfer the system time of master Linux, which serves as the reference clock, to slave Linux. Precise synchronization performance is achieved by measuring and compensating for the propagation delay of GPIO signal and the acquisition and setting latency of Linux system time. We build an experimental setup consisting of two embedded Linux systems, and perform extensive experiments to verify the performance of the proposed synchronization method.

Implementation of An Embedded Platform-Based ATSC Mobile Broadcasting Multiplexer (임베디드 플렛폼 기반 미국향 모바일방송 다중화기 설계 및 구현)

  • Kwon, KiWon;Park, KyungWon;KIm, HyunSik;Lee, YounSung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.93-99
    • /
    • 2011
  • In this paper, an ATSC(Advanced Television Standard Committee)-M/H(Mobile/Handheld) multiplexer is designed and implemented using an embedded Linux based hardware platform. The ATSC-M/H multiplexer is composed of a CPU(Central Processor Unit), an FPGA(Field-Programmable Gate Array), ASI(Asynchronous Serial Interface)/SMPTE310(Society of Motion Picture and Television Engineers310) interface board, and a GPS(Global Position System) clock processing block. The main functions of the ATSC-M/H multiplexer executed in the CPU and FPGA are described. The operation of the ATSC-M/H multiplexer is verified by processing its broadcast signal on a commercial receiver analyzer.

Automatic On-Chip Glitch-Free Backup Clock Changing Method for MCU Clock Failure Protection in Unsafe I/O Pin Noisy Environment (안전하지 않은 I/O핀 노이즈 환경에서 MCU 클럭 보호를 위한 자동 온칩 글리치 프리 백업 클럭 변환 기법)

  • An, Joonghyun;Youn, Jiae;Cho, Jeonghun;Park, Daejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.99-108
    • /
    • 2015
  • The embedded microcontroller which is operated by the logic gates synchronized on the clock pulse, is gradually used as main controller of mission-critical systems. Severe electrical situations such as high voltage/frequency surge may cause malfunctioning of the clock source. The tolerant system operation is required against the various external electric noise and means the robust design technique is becoming more important issue in system clock failure problems. In this paper, we propose on-chip backup clock change architecture for the automatic clock failure detection. For the this, we adopt the edge detector, noise canceller logic and glitch-free clock changer circuit. The implemented edge detector unit detects the abnormal low-frequency of the clock source and the delay chain circuit of the clock pulse by the noise canceller can cancel out the glitch clock. The externally invalid clock source by detecting the emergency status will be switched to back-up clock source by glitch-free clock changer circuit. The proposed circuits are evaluated by Verilog simulation and the fabricated IC is validated by using test equipment electrical field radiation noise

Fully Programmable Memory BIST for Commodity DRAMs

  • Kim, Ilwoong;Jeong, Woosik;Kang, Dongho;Kang, Sungho
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.787-792
    • /
    • 2015
  • To accomplish a high-speed test on low-speed automatic test equipment (ATE), a new instruction-based fully programmable memory built-in self-test (BIST) is proposed. The proposed memory BIST generates a highspeed internal clock signal by multiplying an external low-speed clock signal from an ATE by a clock multiplier embedded in a DRAM. For maximum programmability and small area overhead, the proposed memory BIST stores the unique sets of instructions and corresponding test sequences that are implicit within the test algorithms that it receives from an external ATE. The proposed memory BIST is managed by an external ATE on-the-fly to perform complicated and hard-to-implement functions, such as loop operations and refresh-interrupts. Therefore, the proposed memory BIST has a simple hardware structure compared to conventional memory BIST schemes. The proposed memory BIST is a practical test solution for reducing the overall test cost for the mass production of commodity DDRx SDRAMs.

A Time-to-Digital Converter Using Dual Edge Flip Flops for Improving Resolution (분해능 향상을 위해 듀얼 에지 플립플롭을 사용하는 시간-디지털 변환기)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.816-821
    • /
    • 2019
  • A counter-type time-to-digital converter was designed using a dual edge T flip-flop. The time-to-digital converter was designed with a $0.18{\mu}m$ CMOS process at a supply voltage of 1.5 volts. In a typical time-to-digital converter, when the period of the clock is T, a conversion error corresponding to the period of the clock occurs due to the asynchronism between the input signal and the clock. However, the clock of the time-to-digital converter proposed in this paper is generated in synchronization with the start signal which is the input signal. As a result, conversion errors that may occur due to asynchronization of the start signal and the clock do not occur. The flip-flops constituting the counters are composed of dual-edge flip-flops operating at the positive and negative edges of the clock to improve the resolution.

Implementation of IEEE1588 for Clock Synchronization (CAN 네트워크의 시간동기를 위한 IEEE1588 구현)

  • Park, Sung-Won;Kim, In-Sung;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this paper, an IEEE1588 based clock synchronization technique for CAN (Controller Area Network) is presented. Clock synchronization plays a key role to the success of a networked embedded system. Recently, the IEEE1588 algorithm making use of dedicated chipsets has been widely adopted for the synchronization of various industrial applications using Ethernet. However, there is no chipset available for CAN. This paper presents the implementation of IEEE1588 for CAN, which is implemented using only software and CAN packets without any dedicated chipset. The proposed approach is verified by the comparison between the estimated synchronization precision with a simple model and the measured precision with experimental setup.

Implementation of an Automatic Sunrise Household Lighting System Using a PIC Microcontroller (PIC 마이크로컨트롤러를 이용한 가정용 자동해돋이 조명시스템 구현)

  • Kang Brian B.;Kang Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.70-76
    • /
    • 2005
  • It is known that natural awakening of us in the morning is due to stimulation of the reticular activation system through biological clock in the suprachiasmatic nucleus of hypothalamus by the morning sunlight. If we sleep at dark rooms without windows and so without morning sunlight, thus, it is not easy fur us to get up refreshingly in the morning. In this paper, we propose an automatic sunrise household lighting system that helps us fer getting up cheerfully in the morning even if we sleep in dark rooms without morning sunlight. The proposed lighting system is an embedded system that turns automatically on the electric lamp and makes it brighter and brighter coincidently with the actual sunrise. The proposed system is composed of a PIC microcontroller with flash memory, a real-time clock IC, a D/A converter, an amplifier, a dimmer unit, a light bulb, a display panel and a keyboard. The validity of the proposed intelligent lighting system is demonstrated via a prototype production and experimentation.

SIMD MAC Unit Design for Multimedia Data Processing (멀티미디어 데이터 처리에 적합한 SIMD MAC 연산기의 설계)

  • Hong, In-Pyo;Jeong, Woo-Kyong;Jeong Jae-Won;Lee Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.44-55
    • /
    • 2001
  • MAC(Multiply and ACcumulate) is the core operation of multimedia data processing. Because MAC units implemented on traditional DSP units or embedded processors have latency of three cycles and cannot operate on multiple data simultaneously, then, performances are seriously limited. Many high end general purpose microprocessors have SIMD MAC unit as a functional unit. But these high end MAC units must support pipeline structure for various operation modes and high clock frequency, which makes control logic complex and increases chip area. In this paper, a 64bit SIMD MAC unit for embedded processors is designed. It is implemented to have a latency of one clock cycle to remove pipeline control logics and a minimal area overhead for SIMD support is added to existing Booth multipliers.

  • PDF