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To accomplish a high-speed test on low-speed automatic 
test equipment (ATE), a new instruction-based fully 
programmable memory built-in self-test (BIST) is 
proposed. The proposed memory BIST generates a high-
speed internal clock signal by multiplying an external low-
speed clock signal from an ATE by a clock multiplier 
embedded in a DRAM. For maximum programmability 
and small area overhead, the proposed memory BIST 
stores the unique sets of instructions and corresponding 
test sequences that are implicit within the test algorithms 
that it receives from an external ATE. The proposed 
memory BIST is managed by an external ATE on-the-fly 
to perform complicated and hard-to-implement functions, 
such as loop operations and refresh-interrupts. Therefore, 
the proposed memory BIST has a simple hardware 
structure compared to conventional memory BIST 
schemes. The proposed memory BIST is a practical test 
solution for reducing the overall test cost for the mass 
production of commodity DDRx SDRAMs. 
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I. Introduction 

As the capacity and density of semiconductor memories 
have rapidly increased, maintaining acceptable yields and 
quality has become the most critical challenges in 
semiconductor memory manufacturing. Most commodity 
dynamic random-access memory (DRAM) is tested with a 
multitude of test algorithms in a mass production test, by 
using external automatic test equipment (ATE). Recently, to 
test high-density and high-speed commodity memories, such 
as Giga-bit DDR3 SDRAM with at-speed, a high-end ATE 
platform is required; however, such a platform comes at an 
extremely high cost. The following are some of the major 
requirements of a memory BIST for commodity DRAMs: 
high fault coverage, high test frequency, high diagnostic 
capability, and small area-overhead.  

Most of the previous researches on memory BIST 
techniques have been developed for embedded memories on 
system on a chip (SOC) [1]–[4], but the test algorithms for 
embedded memories are inappropriate for the mass production 
testing of commodity DRAMs. Specifically, programmability 
is mandatory, not optional; programming is used to build 
various types of test algorithms for a mass production test, as 
well as to determine the root cause(s) when critical faults occur, 
to screen them out. To satisfy the major requirements of a 
memory BIST for commodity DRAMs (high fault coverage, 
high test frequency, and small area-overhead), an instruction-
based programmable memory BIST is the most suitable for 
commodity DRAMs.  

This paper proposes a new memory BIST, presents 
experimental data, and provides conclusions on the proposed 
BIST.  
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II. Proposed Memory BIST 

The main concept of the proposed memory BIST is to 
maximize the programmability and reusability of low-
performance ATEs, which are commonly used in the mass 
production testing of commodity DRAMs. Even if a 
commodity DRAM has a memory BIST, an external ATE is 
required to provide input signals and automatically acquire test 
results. 

Figure 1 shows a block diagram of the proposed memory 
BIST, which consists of a sequence buffer, instruction buffer, 
and instruction decoder. In the proposed memory BIST, a built-
in redundancy analysis (BIRA), which consists of fault 
collection from the proposed memory BIST and redundancy 
analysis to extract the featured repair solution, is used for 
wafer-level test and repair [5]. 

Test algorithms for a commodity DRAM generated by an 
ATE generally comprise five unit operations as follows: 
command instructions, loop operations, refresh-interrupts for 
managing various types of retention tests, address operations, 
and data operations. To guarantee a high level of 
programmability for test algorithms, within the confines that an 
ATE is able to provide, a memory BIST for commodity 
DRAMs must support multiple levels of loop operations and 
various types of timers for refresh-interrupts for testing the 
retention time of DRAMs. However, in the proposed memory 
BIST, the loop operations and refresh-interrupts are managed 
by an external ATE to guarantee a high level of 
programmability and reduce the hardware required for the two 
functions. Therefore, the proposed memory BIST handles only 
three unit operations: a command instruction, address operation, 
and data operation; there are also two types of buffer: an 
instruction buffer and a sequence buffer. An instruction buffer 
contains a command instruction, an address operation, and a 
data operation. 

The proposed memory BIST is designed to perform at-speed 
tests with a low-frequency ATE. The external test clock 
frequency of the required low-frequency ATE can be 
multiplied by four or eight to generate a faster internal clock 
frequency for the proposed memory BIST by using modified 
DLL logic. For this reason, several internal instructions must be 
delivered from the external ATE in an external clock cycle so 
that a sequence buffer pointer, which contains pointers for 
instruction buffers to be executed sequentially, is transferred 
from the ATE to the proposed memory BIST. Subsequently, a 
series of instructions is able to be executed with fast internal 
clocks. 

Figure 2 shows the bit fields for a sequence buffer and an 
instruction buffer. The proposed memory BIST has only 31 
instruction buffers (from #0 to #30) and 32 sequential buffers. 

 

Fig. 1. Block diagram of proposed memory BIST. 
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Fig. 2. Bit fields for (a) sequence buffer and (b) instruction buffer.
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These are sufficient for storing complicated test algorithms for 
DRAM mass production. 

Each sequence buffer of Fig. 2(a) consists of twenty-six bits. 
The first bit of a sequence buffer represents the buffer’s link 
status with one of the other remaining buffers. The next five 
bits represent the sequence buffer pointer. The final twenty bits 
represent instruction buffer pointers, which are to be executed 
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Fig. 3. (a) Instruction decoder and (b) function descriptions of 
addr_fn and data_fn. 
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sequentially. 

An instruction buffer pointer is comprised of five bits and 
represents a valid instruction buffer pointer when its value is 
from 0 to 30, whereas it represents the end of the instruction 
buffer when its value is 31. 

If the first bit of sequence buffer A is set to “1” and the next 
five bits point to sequence buffer B, then this means that all of 
the valid instructions of sequence buffer B will be executed 
after completing those of sequence buffer A. 

Each instruction buffer consists of fourteen bits for DDR3 
SDRAM. In Fig. 2(b), the first four bits of the instruction buffer 
represent the command instruction for DDR3 SDRAM, such 
as Active, Write, Read, and Precharge. The next seven bits 
represent the address operations; the fifth to seventh bits 
represent the bank address. The eighth bit selects whether x 
addresses or y addresses are to be modified by the address 
function. The next three bits represent the address functions, 
and the last three bits represent the data function. 

Figure 3 shows the structure of the instruction decoder of the 
proposed memory BIST and provides descriptions of the 
address function and data function for the instructions. The 
instruction decoder decodes each bit of an instruction buffer 
and generates a command; x address and y address; and 

dataE/dataO for the memory core. 
The address generator of the proposed memory BIST (that is, 

ADDR_gen of Fig. 3(a)) has two address registers, xaddr and 
yaddr, to hold a current x address and y address, respectively. It 
also has two registers, xreg and yreg, which hold address 
values to be added or subtracted into address registers by INCR 
or DECR functions of the addr_fn of Fig. 3(b). 

The data generator of the proposed memory BIST has two 
data registers (dreg) to hold current data values, dataE for a 
clock rising edge and dataO for a clock falling edge. 

III. Communication between Memory BIST and ATE 

Figure 4(a) shows an example of a scan algorithm with 
checkerboard data background for a DDR3 SDRAM, which 
includes five loops (L1–L5) that collectively form a three-level 
loop (L1). Figures 4(b) and 4(c) represent a set of unique 
instructions (which are saved in the instruction buffers) and a 
set of sequence buffers (to construct the same test algorithm 
described in Fig. 4 (a)), respectively. 

Figure 5 shows an example of a timing diagram between an 
ATE and the proposed memory BIST; it is assumed that the 
internal clock frequency is eight times faster than the external 
clock frequency from the ATE. To construct the same test 
algorithm as the one shown in Fig. 4, the external ATE 
generates sequence pointers in every clock cycle, such as is 
shown in Fig. 5. If a generated sequence number is 
synchronized with the external low frequency clock signal, 
then the internal instructions for the sequence buffer are 
executed to the memory core. On every rising edge of the 
external clock, the sequence buffer pointer value is stored into a 
sequence register of the memory BIST. At the same time, 
external data is stored in an external data register for setting the 
xreg, yreg, or dreg of the memory BIST. 

When the Link status is set to “0” and an instruction pointer 
of a sequence buffer reaches the “End of pointer” or the fourth 
instruction pointer, the memory BIST retrieves the next 
sequence buffer pointer value from the sequence register; 
otherwise, the sequence pointer value is ignored. 

In this case, the external ATE generates a SEQ0 once and 
consecutive SEQ3s. SEQ0 indicates S0 in the first sequence 
buffer of Fig. 4(c). S0 is linked with S1, which is the start point 
of L1. S1–S14 are sequentially linked, and S14 is linked with 
S15. However, S15 is not linked with any other sequence 
buffer. Therefore, the proposed memory BIST retrieves SEQ3 
from the sequence register and jumps to S3, which is the start 
point of L2 and L3. 

The external ATE manages the sequence buffer pointers and 
internal register setting; it is sufficiently knowledgeable with 
the loop control and refresh-interrupt control to build 
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Fig. 4. Example of test algorithm for DDR3 SDRAM: (a) scan algorithm with checkerboard data backgraound, (b) instruction buffer,
and (c) sequence buffer. 
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complicated test algorithms. Therefore, complicated control 
functions are not required in the proposed memory BIST, 

which makes the structure of the proposed memory BIST very 
simple. In addition, the required area overhead for saving test 
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Fig. 5. Example of timing diagram between ATE and memory BIST. 
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algorithms into the memory BIST is very small, all the while 
guaranteeing full programmability and high-speed testing with 
a low-speed ATE. 

IV. Experimental Results 

The proposed memory BIST was designed with Verilog 
HDL and synthesized with 0.13 μm CMOS technology.  
Table 1 shows a performance comparison of the proposed 
memory BIST with previous researches [1]–[4]. In Table 1, the 
second row represents the area overhead of each memory BIST. 
There is a trade-off between the area overhead and the 
programmability. In a memory BIST for a commodity DRAM, 
a very high programmability has to be provided so as to be 
robust to the ever-changing conditions of mass production 
testing. Although the area overhead of the proposed memory 
BIST is larger than those of [1]–[3], it shows an approximately 
three times smaller area overhead as compared with that of [4] 
and provides a very high programmability as shown by the 
third row of Table 1. Unlike the previous researches [2]–[4], 
the timing control for a retention test can be managed by an 
ATE without extra hardware and additional test channels. This 
fully enables various kinds of retention testing algorithms. 
Therefore, typical mass-production test algorithms (for 
example, Scan, MATS+, Moving Inversion, GalRow, GalCol, 
 

Table 1. Performance comparison. 

Feature [1] [2] [3] [4] Proposed

Area (gates) ~2.5 K > 300 K 7.9 K 50 K 15 K 

Programmability Medium Medium High High Very high

Retention test 
support 

N/A Partial Partial Partial Full 

Testing freq. N/A N/A 400 MHz 972 MHz 800 MHz

 

March LAd [6], and so on) for a commodity DRAM can be 
supported. Using dual instruction decoders, the clock speed of 
the proposed memory BIST is 1.25 ns, and it can perform   
at-speed tests for DDR3 SDRAM. Most current wafer-level 
ATEs, such as MT6060 (YOKOGAWA) and T5377 
(Advantest), are able to generate clock frequencies above   
100 MHz. If a DDR3 SDRAM adopts the proposed memory 
BIST and generates an eight times faster internal clock 
frequency than the external clock speed, then the memory is 
able be tested at up to 800 MHz (1.6 Gbps). Without high-
speed ATEs, the proposed memory BIST can provide a 
practical solution for testing DRAM with at-speed. 

V. Conclusion 

In this paper, an instruction-based fully programmable high-
speed memory BIST solution for commodity DRAM mass 
production tests with low-speed ATEs is proposed. The 
proposed memory BIST provides very high programmability 
with reasonable area overhead, making it is possible to 
encompass typical mass-production test algorithms for 
DRAMs. The proposed memory BIST can be a viable solution 
for maintaining yield and quality of commodity DDRx 
SDRAMs without using high-end ATEs. 
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