
ETRI Journal, Volume 37, Number 4, August 2015 © 2015 Ilwoong Kim et al. 787
http://dx.doi.org/10.4218/etrij.15.0115.0040

To accomplish a high-speed test on low-speed automatic
test equipment (ATE), a new instruction-based fully
programmable memory built-in self-test (BIST) is
proposed. The proposed memory BIST generates a high-
speed internal clock signal by multiplying an external low-
speed clock signal from an ATE by a clock multiplier
embedded in a DRAM. For maximum programmability
and small area overhead, the proposed memory BIST
stores the unique sets of instructions and corresponding
test sequences that are implicit within the test algorithms
that it receives from an external ATE. The proposed
memory BIST is managed by an external ATE on-the-fly
to perform complicated and hard-to-implement functions,
such as loop operations and refresh-interrupts. Therefore,
the proposed memory BIST has a simple hardware
structure compared to conventional memory BIST
schemes. The proposed memory BIST is a practical test
solution for reducing the overall test cost for the mass
production of commodity DDRx SDRAMs.

Keywords: Built-in self-test, DRAM, low cost, at-speed
test.

Manuscript received Jan. 16, 2015; revised Apr. 4, 2015; accepted Apr. 21, 2015.
This work was supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIP) (No. 2015R1A2A1A13001751).
Ilwoong Kim (woong@soc.yonsei.ac.kr), Dongho Kang (fourier2@soc.yonsei.ac.kr), and

Sungho Kang (corresponding author, shkang@yonsei.ac.kr) are with the Department of
Electrical and Electronic Engineering, Yonsei University, Seoul, Rep. of Korea.

Woosik Jeong (woosik.jeong@sk.com) is with the Product Development Group, Hynix
Semiconductor Inc. Icheon, Rep. of Korea.

I. Introduction

As the capacity and density of semiconductor memories
have rapidly increased, maintaining acceptable yields and
quality has become the most critical challenges in
semiconductor memory manufacturing. Most commodity
dynamic random-access memory (DRAM) is tested with a
multitude of test algorithms in a mass production test, by
using external automatic test equipment (ATE). Recently, to
test high-density and high-speed commodity memories, such
as Giga-bit DDR3 SDRAM with at-speed, a high-end ATE
platform is required; however, such a platform comes at an
extremely high cost. The following are some of the major
requirements of a memory BIST for commodity DRAMs:
high fault coverage, high test frequency, high diagnostic
capability, and small area-overhead.

Most of the previous researches on memory BIST
techniques have been developed for embedded memories on
system on a chip (SOC) [1]–[4], but the test algorithms for
embedded memories are inappropriate for the mass production
testing of commodity DRAMs. Specifically, programmability
is mandatory, not optional; programming is used to build
various types of test algorithms for a mass production test, as
well as to determine the root cause(s) when critical faults occur,
to screen them out. To satisfy the major requirements of a
memory BIST for commodity DRAMs (high fault coverage,
high test frequency, and small area-overhead), an instruction-
based programmable memory BIST is the most suitable for
commodity DRAMs.

This paper proposes a new memory BIST, presents
experimental data, and provides conclusions on the proposed
BIST.

Fully Programmable Memory BIST for
Commodity DRAMs

 Ilwoong Kim, Woosik Jeong, Dongho Kang, and Sungho Kang

788 Ilwoong Kim et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0115.0040

II. Proposed Memory BIST

The main concept of the proposed memory BIST is to
maximize the programmability and reusability of low-
performance ATEs, which are commonly used in the mass
production testing of commodity DRAMs. Even if a
commodity DRAM has a memory BIST, an external ATE is
required to provide input signals and automatically acquire test
results.

Figure 1 shows a block diagram of the proposed memory
BIST, which consists of a sequence buffer, instruction buffer,
and instruction decoder. In the proposed memory BIST, a built-
in redundancy analysis (BIRA), which consists of fault
collection from the proposed memory BIST and redundancy
analysis to extract the featured repair solution, is used for
wafer-level test and repair [5].

Test algorithms for a commodity DRAM generated by an
ATE generally comprise five unit operations as follows:
command instructions, loop operations, refresh-interrupts for
managing various types of retention tests, address operations,
and data operations. To guarantee a high level of
programmability for test algorithms, within the confines that an
ATE is able to provide, a memory BIST for commodity
DRAMs must support multiple levels of loop operations and
various types of timers for refresh-interrupts for testing the
retention time of DRAMs. However, in the proposed memory
BIST, the loop operations and refresh-interrupts are managed
by an external ATE to guarantee a high level of
programmability and reduce the hardware required for the two
functions. Therefore, the proposed memory BIST handles only
three unit operations: a command instruction, address operation,
and data operation; there are also two types of buffer: an
instruction buffer and a sequence buffer. An instruction buffer
contains a command instruction, an address operation, and a
data operation.

The proposed memory BIST is designed to perform at-speed
tests with a low-frequency ATE. The external test clock
frequency of the required low-frequency ATE can be
multiplied by four or eight to generate a faster internal clock
frequency for the proposed memory BIST by using modified
DLL logic. For this reason, several internal instructions must be
delivered from the external ATE in an external clock cycle so
that a sequence buffer pointer, which contains pointers for
instruction buffers to be executed sequentially, is transferred
from the ATE to the proposed memory BIST. Subsequently, a
series of instructions is able to be executed with fast internal
clocks.

Figure 2 shows the bit fields for a sequence buffer and an
instruction buffer. The proposed memory BIST has only 31
instruction buffers (from #0 to #30) and 32 sequential buffers.

Fig. 1. Block diagram of proposed memory BIST.

Memory
array

Memory
array

C
ol

. s
pa

re
s

Memory
array

Memory
array

Row spares

C
ol

. s
pa

re
s

Row spares

C
ol

. s
pa

re
s

Row spares

C
ol

. s
pa

re
s

Row spares

BIST

S
eq

ue
nc

e
bu

ff
er

In
st

ru
ct

io
n

bu
ff

er

In
st

ru
ct

io
n

de
co

de
r

Fault
collection

Memory core

B
IR

A

Fault
collection

Redundancy
analysis

Test start

Test end

Ext. clock

Seq. no.

Data in/out

RA result

Repair
solution

E
xt

er
na

l A
T

E

Fig. 2. Bit fields for (a) sequence buffer and (b) instruction buffer.

Sequence buffer
#0

Sequence buffer
#31

Instruction buffer pointer (5 bit)
0–30: instruction buffer pointer
31(E): end of pointer

Link status (1 bit)
0(U): unlinked with other sequence buffer
1(L): linked with other sequence buffer

Command
(4 bit)

Address
(7 bit)

Data
(3 bit)

…

…

Sequence pointer (5 bit)
0–31: sequence buffer pointer

(a)

Instruction buffer
#0

Instruction buffer
#30

…

…

C
K

E

/R
A

S

/C
A

S

/W
E

Bank
(0–7)

S
id

e

addr_fn data_fn

(b)

These are sufficient for storing complicated test algorithms for
DRAM mass production.

Each sequence buffer of Fig. 2(a) consists of twenty-six bits.
The first bit of a sequence buffer represents the buffer’s link
status with one of the other remaining buffers. The next five
bits represent the sequence buffer pointer. The final twenty bits
represent instruction buffer pointers, which are to be executed

ETRI Journal, Volume 37, Number 4, August 2015 Ilwoong Kim et al. 789
http://dx.doi.org/10.4218/etrij.15.0115.0040

Fig. 3. (a) Instruction decoder and (b) function descriptions of
addr_fn and data_fn.

CMD_gen

ADDR_gen

Instruction decoder

(a)

xreg xaddr

yreg yaddr

DATA_gen

Command

Address

Data

Command

xaddr or
yaddr

dataE
dataO

Data
(Ext.)

dreg

(b)

In
st

ru
ct

io
n

bu
ff

er

M
em

or
y

co
re

addr_fn

Side = 0 Side = 1

data_fn

0: LL
1: LH
2: HL
3: HH
4: INC
5: DEC
6: SETREG
7: HOLD

Even/Odd: dreg/ dreg
Even/Odd: dreg/~dreg
Even/Odd: ~dreg/ dreg
Even/Odd: ~dreg/~dreg
dreg+1
dreg–1
set values to dreg
hold

0: INC
1: DEC
2: INCR
3: DECR
4: SETZ
5: SETM
6: SETREG
7: HOLD

xaddr+1
xaddr–1
xaddr+xreg
xaddr–xreg
set all 0 to xaddr
set max. to xaddr
set xreg
hold

yaddr+1
yaddr–1
yaddr+yreg
yaddr–yreg
set all 0 to yaddr
set max. to yaddr
set yreg
hold

sequentially.

An instruction buffer pointer is comprised of five bits and
represents a valid instruction buffer pointer when its value is
from 0 to 30, whereas it represents the end of the instruction
buffer when its value is 31.

If the first bit of sequence buffer A is set to “1” and the next
five bits point to sequence buffer B, then this means that all of
the valid instructions of sequence buffer B will be executed
after completing those of sequence buffer A.

Each instruction buffer consists of fourteen bits for DDR3
SDRAM. In Fig. 2(b), the first four bits of the instruction buffer
represent the command instruction for DDR3 SDRAM, such
as Active, Write, Read, and Precharge. The next seven bits
represent the address operations; the fifth to seventh bits
represent the bank address. The eighth bit selects whether x
addresses or y addresses are to be modified by the address
function. The next three bits represent the address functions,
and the last three bits represent the data function.

Figure 3 shows the structure of the instruction decoder of the
proposed memory BIST and provides descriptions of the
address function and data function for the instructions. The
instruction decoder decodes each bit of an instruction buffer
and generates a command; x address and y address; and

dataE/dataO for the memory core.
The address generator of the proposed memory BIST (that is,

ADDR_gen of Fig. 3(a)) has two address registers, xaddr and
yaddr, to hold a current x address and y address, respectively. It
also has two registers, xreg and yreg, which hold address
values to be added or subtracted into address registers by INCR
or DECR functions of the addr_fn of Fig. 3(b).

The data generator of the proposed memory BIST has two
data registers (dreg) to hold current data values, dataE for a
clock rising edge and dataO for a clock falling edge.

III. Communication between Memory BIST and ATE

Figure 4(a) shows an example of a scan algorithm with
checkerboard data background for a DDR3 SDRAM, which
includes five loops (L1–L5) that collectively form a three-level
loop (L1). Figures 4(b) and 4(c) represent a set of unique
instructions (which are saved in the instruction buffers) and a
set of sequence buffers (to construct the same test algorithm
described in Fig. 4 (a)), respectively.

Figure 5 shows an example of a timing diagram between an
ATE and the proposed memory BIST; it is assumed that the
internal clock frequency is eight times faster than the external
clock frequency from the ATE. To construct the same test
algorithm as the one shown in Fig. 4, the external ATE
generates sequence pointers in every clock cycle, such as is
shown in Fig. 5. If a generated sequence number is
synchronized with the external low frequency clock signal,
then the internal instructions for the sequence buffer are
executed to the memory core. On every rising edge of the
external clock, the sequence buffer pointer value is stored into a
sequence register of the memory BIST. At the same time,
external data is stored in an external data register for setting the
xreg, yreg, or dreg of the memory BIST.

When the Link status is set to “0” and an instruction pointer
of a sequence buffer reaches the “End of pointer” or the fourth
instruction pointer, the memory BIST retrieves the next
sequence buffer pointer value from the sequence register;
otherwise, the sequence pointer value is ignored.

In this case, the external ATE generates a SEQ0 once and
consecutive SEQ3s. SEQ0 indicates S0 in the first sequence
buffer of Fig. 4(c). S0 is linked with S1, which is the start point
of L1. S1–S14 are sequentially linked, and S14 is linked with
S15. However, S15 is not linked with any other sequence
buffer. Therefore, the proposed memory BIST retrieves SEQ3
from the sequence register and jumps to S3, which is the start
point of L2 and L3.

The external ATE manages the sequence buffer pointers and
internal register setting; it is sufficiently knowledgeable with
the loop control and refresh-interrupt control to build

790 Ilwoong Kim et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0115.0040

Fig. 4. Example of test algorithm for DDR3 SDRAM: (a) scan algorithm with checkerboard data backgraound, (b) instruction buffer,
and (c) sequence buffer.

WRITE 0(1) on even row, WRITE 1(0) on odd row
: L, S1, 1, 6, 6, 6
: L, S2, 3, 4, 6, 6
: L, S3, 2, 6, 6, 6
: L, S4, 5, 6, 6, 6
: L, S5, 6, 7, 6, 6
: L, S6, 6, 6, 9, 9
: L, S7, 9, 9, 6, 6
: L, S8, 6, 6, 6, 6
: L, S9, 11, 12, 6, 6
: L,S10, 6, 5, 6, 6
: L,S11, 6, 6, 7, 6
: L,S12, 6, 6, 6, 10
: L,S13, 10, 10, 10, 6
: L,S14, 6, 6, 6, 6
: L,S15, 6, 6, 12, 6
: U, -, 6, 6, E, - //Jump to S3 or S16 or S17
: L, S3, 3, 15, E, - //Link to S3

READ 0(1) on even row, READ 1(0) on odd row
: L,S18, 3, 4, E, -
: L,S22, 5, 6, 6, 6
: L,S23, 6, 8, 6, 6
: L,S24, 6, 11, 13, 9
: L,S25, 9, 9, 5, 6
: L,S26, 6, 6, 6, 8
: L,S27, 6, 6, 6, 11
: U, -, 14, 10, 10, 10 //Jump to S18 or S25 or S1
: L,S18, 3, 15, E, - //Link to S18

S0
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12
S13
S14
S15
S16

S17
S18
S19
S20
S21
S22
S23
S24
S25

: NOP YREG=Ext. Data
: NOP DREG=Ext. Data
: NOP AX=0
: NOP AY=0
: ACT
: NOP
: WRIT
: READ
: NOP DATA=LL
: NOP DATA=HH
: PCG
: NOP AX=AX+1
: NOP AX=AX+1 DATA=LL
: NOP AX=AX+1 DATA=HH
: NOP AY=AY+YREG

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(b)

Address

Command

Data

Link status

Seq. pointer

Inst. buf. pointer

(c) (a)

YREG setting
NOP NOP YREG=Ext. Data

WRITE 0(1) on even row, WRITE 1(0) on odd row
LOOP 2
NOP NOP AX=0
NOP NOP AY=0
NOP NOP DREG=Ext. Data
LOOP NUM_COLUMNS
LOOP NUM_ROWS
NOP ACT
NOP NOP
NOP WRIT
NOP NOP
NOP NOP DATA=LL
NOP NOP DATA=LL
NOP NOP DATA=LL
NOP NOP DATA=LL
NOP NOP
NOP PCG
NOP NOP AX=AX+1
NOP NOP
NOP WRIT
NOP NOP
NOP NOP DATA=HH
NOP NOP DATA=HH
NOP NOP DATA=HH
NOP NOP DATA=HH
NOP NOP
NOP PCG
NOP NOP AX=AX+1
NOP NOP
ELOOP
NOP NOP AX=0
NOP NOP AY=AY+YREG
ELOOP

READ 0(1) on even row, READ 1(0) on odd row
NOP NOP AX=0
NOP NOP AY=0
LOOP NUM_COLUMNS
LOOP NUM_ROWS
NOP ACT
NOP NOP
NOP READ
NOP NOP
NOP PCG
NOP NOP AX=AX+1 DATA=LL
NOP NOP DATA=LL
NOP NOP DATA=LL
NOP NOP DATA=LL
NOP ACT
NOP NOP
NOP READ
NOP NOP
NOP PCG
NOP NOP AX=AX+1 DATA=HH
NOP NOP DATA=HH
NOP NOP DATA=HH
NOP NOP DATA=HH
ELOOP
NOP NOP AX=0
NOP NOP AY=AY+YREG
ELOOP
ELOOP

1

2
3
4
5
6
7
8

13

18
19
20
21

28
29

38

43
44
45
46

53
54

58
59
60
61

62
63
64
65
66

71

75
76
77
78
79
80

85

89
90
91
92
93
94
95
96
97
98

…
…

…
…

…
…

…
…

…
…

…

Loop

L3

L2

L5

L4

L1

complicated test algorithms. Therefore, complicated control
functions are not required in the proposed memory BIST,

which makes the structure of the proposed memory BIST very
simple. In addition, the required area overhead for saving test

ETRI Journal, Volume 37, Number 4, August 2015 Ilwoong Kim et al. 791
http://dx.doi.org/10.4218/etrij.15.0115.0040

Fig. 5. Example of timing diagram between ATE and memory BIST.

L L L L LL L L

External CLK

External
command

Internal CLK

Instruction pointer

Sequence register SEQ0 SEQ3 SEQ3 SEQ3

6 6 5 6 6 6 6 7 6

SEQ3SEQ0 SEQ3 SEQ3

SEQ3

SEQ3

Sequence buffer S3 S5

Internal command

A
C

T

W
R

IT

P
C

G

Internal address

X
=

0

Y=
0

X
=1

X
=0

Y=
0

Internal data

S4 S6 S7

External
data DB* ~DB ~DB ~DB

External data
register 8 DB ~DB ~DB ~DB

S0 S1 S2

1 6 6 6 3 4 6 6 2 6

yreg=
8

dreg=
D

B

6 6 9 9 9 9 6 6 6 6 6 66 6 6

S8 S9 S10

6 66 5

SEQ3 SEQ3 SEQ3 SEQ3 SEQ3

~DB ~DB ~DB ~DB ~DB

~DB ~DB ~DB ~DB

SEQ3 SEQ3 SEQ3 SEQ3

7 66 6 66 6 6 6

S11 S12 S13 S14

A
C

T
X

=
1

W
R

IT
Y

=0

6 6 6 6 6 6 6

P
C

G
X

=
2

S15 S3

5 6

A
C

T

6

X
=

2

Register setting

*DB: data
background Start point

of L1
Start point

of L2 and L3
Jump to start
point of L3

8 (yreg value)

1112101010101211

HHHHHHHH

algorithms into the memory BIST is very small, all the while
guaranteeing full programmability and high-speed testing with
a low-speed ATE.

IV. Experimental Results

The proposed memory BIST was designed with Verilog
HDL and synthesized with 0.13 μm CMOS technology.
Table 1 shows a performance comparison of the proposed
memory BIST with previous researches [1]–[4]. In Table 1, the
second row represents the area overhead of each memory BIST.
There is a trade-off between the area overhead and the
programmability. In a memory BIST for a commodity DRAM,
a very high programmability has to be provided so as to be
robust to the ever-changing conditions of mass production
testing. Although the area overhead of the proposed memory
BIST is larger than those of [1]–[3], it shows an approximately
three times smaller area overhead as compared with that of [4]
and provides a very high programmability as shown by the
third row of Table 1. Unlike the previous researches [2]–[4],
the timing control for a retention test can be managed by an
ATE without extra hardware and additional test channels. This
fully enables various kinds of retention testing algorithms.
Therefore, typical mass-production test algorithms (for
example, Scan, MATS+, Moving Inversion, GalRow, GalCol,

Table 1. Performance comparison.

Feature [1] [2] [3] [4] Proposed

Area (gates) ~2.5 K > 300 K 7.9 K 50 K 15 K

Programmability Medium Medium High High Very high

Retention test
support

N/A Partial Partial Partial Full

Testing freq. N/A N/A 400 MHz 972 MHz 800 MHz

March LAd [6], and so on) for a commodity DRAM can be
supported. Using dual instruction decoders, the clock speed of
the proposed memory BIST is 1.25 ns, and it can perform
at-speed tests for DDR3 SDRAM. Most current wafer-level
ATEs, such as MT6060 (YOKOGAWA) and T5377
(Advantest), are able to generate clock frequencies above
100 MHz. If a DDR3 SDRAM adopts the proposed memory
BIST and generates an eight times faster internal clock
frequency than the external clock speed, then the memory is
able be tested at up to 800 MHz (1.6 Gbps). Without high-
speed ATEs, the proposed memory BIST can provide a
practical solution for testing DRAM with at-speed.

V. Conclusion

In this paper, an instruction-based fully programmable high-
speed memory BIST solution for commodity DRAM mass
production tests with low-speed ATEs is proposed. The
proposed memory BIST provides very high programmability
with reasonable area overhead, making it is possible to
encompass typical mass-production test algorithms for
DRAMs. The proposed memory BIST can be a viable solution
for maintaining yield and quality of commodity DDRx
SDRAMs without using high-end ATEs.

References

[1] B. Ismet, O. Caty, and Y. Wong, “Highly Configurable

Programmable Built-In Self Test Architecture for High-Speed

Memories,” IEEE VLSI Test Symp., Palm Springs, CA, USA,

May 1–5, 2005, pp. 21–26.

[2] S. Boutobza et al., “Programmable Memory BIST,” IEEE Int.

Test Conf., Austin, TX, USA, Nov. 8–10, 2005, pp. 1155–1164.

[3] Y. Park et al., “A Flexible Programmable Memory BIST for

Embedded Single-Port Memory and Dual-Port Memory,” ETRI

792 Ilwoong Kim et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0115.0040

J., vol. 35, no. 5, Oct. 2013, pp. 808–818.

[4] M. Kume et al., “Programmable At-Speed Array and Functional

BIST for Embedded DRAM LSI,” IEEE Int. Test Conf.,

Charlotte, NC, USA, Oct. 26–28, 2004, pp. 988–996.

[5] T. Han et al., “High Repair Efficiency BIRA Algorithm with a

Line Fault Scheme,” ETRI J., vol. 32, no. 4, Aug. 2010, pp. 642–

644.

[6] Z. Al-Ars and A.J. van de Goor, “Static and Dynamic Behavior of

Memory Cell Array Spot Defects in Embedded DRAMs,” IEEE

Trans. Comput., vol. 52, no. 3, Mar. 2003, pp. 293–309.

Ilwoong Kim received his BS degree in control

and instrumentation engineering from

Kwangwoon University, Seoul, Rep. of Korea, in

2001 and his MS degree in electrical and

electronic engineering from Yonsei University,

Seoul, Rep. of Korea, in 2007, respectively. He is

currently pursuing his PhD degree in electrical

and electronics engineering at Yonsei University. His current research

interests include built-in self-test and low-cost fault management for

commodity DRAMs; TSV repair schemes and algorithms; VLSI/SOC

design and testing; and design for testability.

Woosik Jeong received his BS degree in

control and instrumentation engineering and his

MS degree in electronics engineering from

Korea University, Seoul, Rep. of Korea, in 1997

and 1999, respectively. He received his PhD

degree in electrical and electronics engineering

from Yonsei University, Seoul, Rep. of Korea,

in 2011. Since 1999, he has been a product engineer with the DRAM

Technology Development Division, SK hynix Semiconductor, Inc.,

Icheon, Rep. of Korea. His current research interests include memory

testing, built-in self-testing, built-in self-repair, reliability, and very-

large-scale integration design.

Dongho Kang received his BS degree in

information and communication engineering

from Myongji University, Yongin, Rep. of

Korea, in 2013. He is currently pursuing his MS

degree in electrical and electronics engineering

at Yonsei University, Seoul, Rep. of Korea. His

current research interests include reliable storage

systems, built-in self-testing, TSV repair, redundancy analysis

algorithms, reliability, and VLSI design.

Sungho Kang received his BS degree in

control and instrumentation engineering from

Seoul National University, Rep. of Korea, in

1986 and his MS and PhD degrees in electrical

and computer engineering from the University

of Texas at Austin, USA, in 1988 and 1992,

respectively. From 1989 to 1992, he was a

research scientist with the Schlumberger Laboratory for Computer

Science, Schlumberger, Inc., USA. From 1992 to 1994, he was a

senior staff engineer with Semiconductor Systems Design Technology,

Motorola, Inc., USA. Since 1994, he has been a professor with the

Department of Electrical and Electronic Engineering, Yonsei

University, Seoul, Rep. of Korea. His current research interests include

VLSI/SOC design and testing; design for testability; and design for

manufacturability.

