• 제목/요약/키워드: Electronic Hardware

검색결과 1,037건 처리시간 0.027초

영상 품질 향상을 위한 색 사상 기반 실시간 광역역광보정 알고리즘의 하드웨어 설계 (Hardware Design of Real-Time Wide Dynamic Range Algorithm Based on Tone Mapping Method for Image Quality Enhancement)

  • 김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.270-275
    • /
    • 2018
  • 영상의 화질을 개선하는 방법은 색 사상 방법과 레티넥스 방법으로 나누어진다. 색 사상 방법의 대표적인 예는 히스토그램을 기반으로 영상의 화질을 개선하는 방법이다. 본 논문에서는, 영상 품질 향상을 위한 색 사상 기반 실시간 광역역광보정 알고리즘의 하드웨어 설계를 제안한다. 제안하는 방법은 영상을 밝기 영역과 색 영역으로 나눈 후, 밝기 영역의 변화량을 기초하여 색 영역을 개선한다. 또한, 고품질의 영상을 원하는 흐름에 맞추어, 12bit로 확장된 신호를 사용하며, 기존의 8bit 신호와도 호환이 가능하게 설계하였다. 시뮬레이션 결과로 영상의 화질의 개선됨을 확인 하였으며, 하드웨어 설계 결과 최대 138.26MHz로 실시간 동작이 가능함을 확인하였다.

하드웨어 구현에 적합한 효율적인 LDPC 코덱의 설계 (Design of an Efficient LDPC Codec for Hardware Implementation)

  • 이찬호;박재근
    • 대한전자공학회논문지SD
    • /
    • 제43권7호
    • /
    • pp.50-57
    • /
    • 2006
  • Low-density parity check (LDPC) code는 최근 그 우수한 성능으로 인하여 4세대 무선 이동 통신용 채널 코딩으로 주목받고 있고 유럽의 고화질 위성방송 규격으로 채택되었다. 그러나 기존의 연구들이 제안한 parity check matrix (H-matrix)는 실제로 하드웨어로 구현함에 있어서 인코더 혹은 디코더에 제약을 가지고 있다. 이러한 문제점을 해결하고자 본 논문에서는 인코더와 디코더 양쪽 모두 효율적으로 하드웨어로 구현이 가능한 hybrid H-matrix 구조를 제안한다. Hybrid H-matrix는 semi-random 방식과 partly parallel 방식을 결합하여 하드웨어로 구현시 partly parallel 방식이 가지는 디코더의 복잡도가 감소되는 장점을 유지하면서 인코더 또한 semi-random 방식을 사용하여 복잡도가 감소된다. 제안한 구조를 사용하여 LDPC 인코더와 디코더를 설계하고 합성하여 기존의 결과와 비교하였다.

12×12 블록의 디지털 홀로그램 생성 회로의 ASIC 설계 (A New ASIC Design of Digital Hologram Generation Circuit for 12×12 Block)

  • 이윤혁;김동욱;서영호
    • 방송공학회논문지
    • /
    • 제21권6호
    • /
    • pp.944-956
    • /
    • 2016
  • 본 논문에서는 블록 기반으로 홀로그램을 생성할 수 있는 하드웨어의 구조를 제안하고, ASIC (application specific integrated circuit) 환경을 이용하여 VLSI(very large scaled integrated circuit) 회로로 구현하였다. 제안한 하드웨어는 홀로그램 평면의 블록 단위로 병렬 연산을 수행할 수 있는 구조를 가지고 있다. 한 객체 포인트에 대한 홀로그램 블록의 영향을 독립적으로 연산한 후에 모든 객체 포인트에 대한 결과를 누적하여 홀로그램을 생성하였다. 이러한 구조를 통해서 다양한 크기의 홀로그램을 하드웨어를 이용하여 생성할 수 있으면서 최소의 메모리 접근량을 사용하면서 실시간으로 동작이 가능하도록 하였다. 제안한 하드웨어는 Magna chip의 Hynix 0.18μm CMOS 라이브러리를 이용하여 구현되었고, 실수항과 복소항의 복소 홀로그램을 생성할 수 있다. 제안한 하드웨어는 최대 200MHz에서 안정적으로 동작할 수 있고, 약 876,608개의 게이트 수로 구현되었다.

Quasi-Cyclic Low Density Panty Check 복호기의 다양한 설계 관점에 대한 성능분석 (Performance Analysis on Various Design Issues of Quasi-Cyclic Low Density Parity Check Decoder)

  • 정수경;박태근
    • 대한전자공학회논문지SD
    • /
    • 제46권11호
    • /
    • pp.92-100
    • /
    • 2009
  • 본 논문은 LLR-BP 복호 알고리즘을 사용하는 LDPC 복호기의 하드웨어 구조 분석하고 효율적인 복호기의 설계 방법들을 제시하였다. 또한 설계 시 복호 성능 및 하드웨어 복잡도에 영향을 미칠 수 있는 다양한 설계 이슈들을 제시하고 복호 성능의 변화를 모의실험을 통하여 분석하였다. 오류확률을 전달하는 메시지의 양자화는 정수부 3비트, 소수부 4비트를 할당하였고, 복호 성능이 저하되지 않도록 사전정보에 정수부 2비트, 소수부 4비트를 할당하였으며 LUT로 구현되는 $\Psi$(x) 함수를 조합회로인 PWL 블록으로 대체하여 하드웨어 구조의 개선에 대해 논의하였다. 복호 시간을 단축하기 위하여 중첩 스케줄링을 적용하고, 각 복호기 구조 및 설계 변수들의 제한에 따른 하드웨어 자원을 비교함으로써, 하드웨어 복잡도를 분석하였다.

HEVC/VP9 4×4 Transform 통합 블록 설계 (Design of Unified HEVC/VP9 4×4 Transform Block)

  • 정슬기;이성수
    • 전기전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.392-399
    • /
    • 2015
  • 본 논문에서는 HEVC와 VP9 코덱의 계수 변환 (Transform)을 수행하는 통합형 아키텍쳐를 제안하여 하드웨어 크기를 줄이고자 한다. 제안하는 아키텍쳐는 HEVC $4{\times}4$ IDCT, HEVC $4{\times}4$ IDST, VP9 $4{\times}4$ IDCT, VP9 $4{\times}4$ IADST를 통합 하드웨어에서 처리가 가능하다. HEVC $4{\times}4$ IDCT와 VP9 $4{\times}4$ IDCT는 계수의 스케일만 다를 뿐 동일한 IDCT 연산을 사용하며, 마찬가지로 HEVC $4{\times}4$ IDST와 VP9 $4{\times}4$ IADST도 계수의 스케일만 다를 뿐 동일한 IDST 연산을 사용한다. 더욱이 IDCT 연산과 IDST 연산에는 상당히 많은 유사점이 있어 일부 하드웨어를 공동으로 사용할 수 있다. 따라서 제안하는 하드웨어는 4가지 연산에 대해 곱셈기의 계수는 각각 다르지만 버터플라이 덧셈기등은 공통으로 사용하여 통합적으로 수행한다. 0.18um 공정에서 합성했을 때 게이트 수가 약 6,679 게이트로 기존 아키텍처 대비 25.3% 감소함을 확인하였다.

효율적인 컴퓨터 비전 시스템을 위한 깊이 영상 안정화 방법의 하드웨어 구현 (Hardware Implementation of Depth Image Stabilization Method for Efficient Computer Vision System)

  • 김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1805-1810
    • /
    • 2015
  • 깊이 영상에 대한 접근성이 용이해지면서 다양한 연구 분야에서 깊이 센서를 활용하고 있다. 컴퓨터 비전의 모션인식 분야에서도 깊이 영상을 이용한 연구들이 진행되고 있다. 모션을 정확히 인식하기 위해서는 안정적인 데이터를 활용할 수 있어야 하지만 깊이 센서는 노이즈를 포함한다. 이러한 노이즈는 모션 인식 시스템의 성능에 영향을 줄 수 있기 때문에 효과적으로 노이즈를 억제하는 방법이 필요하다. 본 논문에서는 하드웨어를 사용하여 깊이 센서에서 입력되는 깊이 영상에 시간 영역과 공간 영역에서 안정화를 수행함으로써 깊이 영상을 안정화하는 하드웨어를 제안한다. 바닥 제거 알고리즘에 깊이 영상 안정화를 적용하여 노이즈를 억제한 깊이 영상 안정화가 시스템의 신뢰도 향상에 기여할 수 있음을 확인하고 구현한 하드웨어를 FPGA와 APU를 이용해 실시간 동작을 확인하였으며 설계한 하드웨어는 최대 202.184MHz에서 동작할 수 있다.

자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축 (Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission)

  • 장인규;서인근;전재욱;황성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.

멀티모달 신호처리를 위한 경량 인공지능 시스템 설계 (Design of Lightweight Artificial Intelligence System for Multimodal Signal Processing)

  • 김병수;이재학;황태호;김동순
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.1037-1042
    • /
    • 2018
  • 최근 인간의 뇌를 모방하여 정보를 학습하고 처리하는 뉴로모픽 기술에 대한 연구는 꾸준히 진행되고 있다. 뉴로모픽 시스템의 하드웨어 구현은 다수의 간단한 연산절차와 고도의 병렬처리 구조로 구성이 가능하여, 처리속도, 전력소비, 저 복잡도 구현 측면에서 상당한 이점을 가진다. 또한 저 전력, 소형 임베디드 시스템에 적용 가능한 뉴로모픽 기술에 대한 연구가 급증하고 있으며, 정확도 손실 없이 저 복잡도 구현을 위해서는 입력데이터의 차원축소 기술이 필수적이다. 본 논문은 멀티모달 센서 데이터를 처리하기 위해 멀티모달 센서 시스템, 다수의 뉴론 엔진, 뉴론 엔진 컨트롤러 등으로 구성된 경량 인공지능 엔진과 특징추출기를 설계 하였으며, 이를 위한 병렬 뉴론 엔진 구조를 제안하였다. 설계한 인공지능 엔진, 특징 추출기, Micro Controller Unit(MCU)를 연동하여 제안한 경량 인공지능 엔진의 성능 검증을 진행하였다.

다중 노출 영상을 이용한 영상의 화질 개선 알고리즘의 실시간 하드웨어 설계 (Real-Time Hardware Design of Image Quality Enhancement Algorithm using Multiple Exposure Images)

  • 이승민;강봉순
    • 한국정보통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.1462-1467
    • /
    • 2018
  • 단일 노출 영상, 또는 다중 노출 영상을 사용하여 저조도 영상의 화질 개선 알고리즘이 수많이 연구되고 있다. 저조도 영상은 명암이 낮고, 잡음이 많아 피사체의 정보를 식별하기에 한계가 있다. 본 논문에서는 듀얼카메라로 촬영한 다중 노출 영상 2개를 이용하여 저조도 영상의 화질 개선하는 알고리즘의 하드웨어 설계를 제안한다. 제안하는 하드웨어 구조는 전달함수를 사용하여 프레임 메모리와 라인 메모리를 쓰지 않는 방식으로 실시간 처리로 설계되었다. 그리고 제안하는 하드웨어 설계는 Verilog로 설계했고, Modelsim을 사용하여 검증했다. 마지막으로 Xilinx사의 xc7z045-2ffg900을 목표 보드로 이용하여 FPGA를 구현했을 때 최대 동작 주파수 167.617MHz로 확인하였고, 영상 크기가 $1920{\times}1080$ 일 때, 소요된 총 클럭 사이클은 2,076,601이며 80.7fps로 실시간 처리가 가능하다.

듀얼 필드 모듈러 곱셈을 지원하는 몽고메리 곱셈기 (Montgomery Multiplier Supporting Dual-Field Modular Multiplication)

  • 김동성;신경욱
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.736-743
    • /
    • 2020
  • 모듈러 곱셈은 타원곡선 암호 (elliptic curve cryptography; ECC), RSA 등의 공개키 암호에서 중요하게 사용되는 산술연산 중 하나이며, 모듈러 곱셈기의 성능은 공개키 암호 하드웨어의 성능에 큰 영향을 미치는 핵심 요소가 된다. 본 논문에서는 워드기반 몽고메리 모듈러 곱셈 알고리듬의 효율적인 하드웨어 구현에 대해 기술한다. 본 논문의 모듈러 곱셈기는 SEC2 ECC 표준에 정의된 소수체 GF(p)와 이진체 GF(2k) 상의 11가지 필드 크기를 지원하여 타원곡선 암호 프로세서의 경량 하드웨어 구현에 적합하도록 설계되었다. 제안된 곱셈기 구조는 부분곱 생성 및 가산 연산과 모듈러 축약 연산이 파이프라인 방식으로 처리하며, 곱셈 연산에 소요되는 클록 사이클 수를 약 50% 줄였다. 설계된 모듈러 곱셈기를 FPGA 디바이스에 구현하여 하드웨어 동작을 검증하였으며, 65-nm CMOS 표준셀로 합성한 결과 33,635개의 등가 게이트로 구현되었고, 최대 동작 클록 주파수는 147 MHz로 추정되었다.