Design of an Efficient LDPC Codec for Hardware Implementation

하드웨어 구현에 적합한 효율적인 LDPC 코덱의 설계

  • Lee Chan-Ho (School of Electronic Engr., Soongsil University) ;
  • Park Jae-Geun (Dept. of Electronic Engr., Soongsil University)
  • 이찬호 (숭실대학교 정보통신전자공학부) ;
  • 박재근 (숭실대학교 전자공학과)
  • Published : 2006.07.01

Abstract

Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and compared with the previous results.

Low-density parity check (LDPC) code는 최근 그 우수한 성능으로 인하여 4세대 무선 이동 통신용 채널 코딩으로 주목받고 있고 유럽의 고화질 위성방송 규격으로 채택되었다. 그러나 기존의 연구들이 제안한 parity check matrix (H-matrix)는 실제로 하드웨어로 구현함에 있어서 인코더 혹은 디코더에 제약을 가지고 있다. 이러한 문제점을 해결하고자 본 논문에서는 인코더와 디코더 양쪽 모두 효율적으로 하드웨어로 구현이 가능한 hybrid H-matrix 구조를 제안한다. Hybrid H-matrix는 semi-random 방식과 partly parallel 방식을 결합하여 하드웨어로 구현시 partly parallel 방식이 가지는 디코더의 복잡도가 감소되는 장점을 유지하면서 인코더 또한 semi-random 방식을 사용하여 복잡도가 감소된다. 제안한 구조를 사용하여 LDPC 인코더와 디코더를 설계하고 합성하여 기존의 결과와 비교하였다.

Keywords

References

  1. O'Brien, F. E., Jr., Guenther, R.D., 'Global standardization of IMT-2000', Emerging Technologies Symposium: Broadband, Wireless Internet Access, 2000 IEEE ,10-11 April 2000 https://doi.org/10.1109/ETS.2000.916516
  2. R G. Gallager, 'Low density parity check codes', IRE Trans. Inform Theory, vol. IT-8, pp. 21-28, Jan. 1962 https://doi.org/10.1109/TIT.1962.1057683
  3. D. J. C. MacKay and R. M. Neal, 'Near Shannon limit performance of low density parity check codes', Electron Lett, vol. 32, pp. 1645-1646, Aug. 1996 https://doi.org/10.1049/el:19961141
  4. S.-Y. Chung, G. D. Forney Jr., T. J. Richardson, and R. Urbanke, 'On the design of low-density parity-check codes within 0.0045dB of the Shannon limit', IEEE Commun. Lett, vol. 5, pp. 58-60, Feb. 2001 https://doi.org/10.1109/4234.905935
  5. Tong Zhang, Z. Wang, and K. K. Parhi, 'On finite precision implementation of low-density parity-check codes decoder', in Proc. of 2001 IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 4, pp. 202-205, Sydney, Australia, May 2001 https://doi.org/10.1109/ISCAS.2001.922207
  6. DVB-S2 DRAFT ETSI EN 302 307 V1.1.1(204-06), Digital Video Broadcasting-Satellite version 2, ETSI, 2004
  7. T. J. Richardson, and R. Urbanke, 'Efficient Encoding of Low-Density Parity-Check Codes', IEEE Trans. Inform Theory, vol. 47, No.2, pp. 638-656, Feb. 2001 https://doi.org/10.1109/18.910579
  8. Li Ping, W. K. Leung, and Nam Phamdo, 'Low density parity check codes with semi -random parity check matrix', lEE Electronics Lett, vol. 35, pp. 38-39, Jan. 1999 https://doi.org/10.1049/el:19990065
  9. Tong Zhang, and Keshab K. Parhi, 'A 54 Mbps (3,6)-regular FPGA LDPC decoder', Signal Processing Systems, 2002. IEEE Workshop (SiPS). pp. 16-18, San Diego, USA, Oct. 2002
  10. D. J. C. MacKay, 'Good error-correcting codes based on very sparse matrices', IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999 https://doi.org/10.1109/18.748992
  11. Hao Zhong and Tong Zhang, 'Design of VLSI Implementation-Oriented LDPC codes', IEEE Vehicular Technology Conference, Orlando, USA, Oct. 2003
  12. R. Echard, and Shih-Chun Chang, 'The pi-rotation low-density parity check codes', IEEE Global Telecom Conf, vol. 2, pp. 980-984, San Antonio, USA, Nov. 2001 https://doi.org/10.1109/GLOCOM.2001.965564
  13. T. Zhang, and K. K. Parhi, 'VLSI implementation-oriented (3,k)-regular low- density parity check codes', IEEE Workshop, signal processing systems(SiPS), pp. 25-36, Antwerp, Belgium, Sept. 2001 https://doi.org/10.1109/SIPS.2001.957328
  14. J. Campello, and D. S. Modha, 'Extended bitfilling and ldpc code design', IEEE Global Telecom Conf, 2001, San Antonio, USA, pp. 985-989, Nov. 2001 https://doi.org/10.1109/GLOCOM.2001.965565
  15. Jinghu Chen, Fossorier, M.P.C., 'Near optimum universal belief propagation based decoding of low-desity parity check codes', Communications, IEEE Transactions on, Volume 50 Issue 3 Pages 406-414, March 2002 https://doi.org/10.1109/26.990903
  16. Hao Zhong, and Tong Zhang, 'Block-LDPC: A Practical LDPC Coding System Design Approach', IEEE Transaction on Circuit and Systems, Regular papers; vol. 52, No. 4 pp. 766-775, April 2005 https://doi.org/10.1109/TCSI.2005.844113
  17. A. J. Felstrom and K. S. Zigangirov, 'Timevarying periodic convolutional codes with low-density parity-check matrix,' IEEE Trans. Information Theory, vol. 45, no. 6, September 1999 https://doi.org/10.1109/18.782171
  18. S. Bates and G. Block, 'A memory-based architecture for FPGA implementations of lowdensity parity-check decoders', in Proceedings of IEEE Symposium on Circuits and Systems (ISCAS), 2005. pp. 336 - 339 Vol. 1, Kobe, Japan, 23-26 May 2005 https://doi.org/10.1109/ISCAS.2005.1464593
  19. S. Bates and G. Block, 'A memory-based architecture for FPGA implementations of lowdensity parity-check decoders', in Proceedings of IEEE Symposium on Circuits and Systems (ISCAS), 2005. pp. 4513-4516 Vol. 5, Kobe, Japan, 23-26 May 2005 https://doi.org/10.1109/ISCAS.2005.1464593