Performance Analysis on Various Design Issues of Quasi-Cyclic Low Density Parity Check Decoder

Quasi-Cyclic Low Density Panty Check 복호기의 다양한 설계 관점에 대한 성능분석

  • Chung, Su-Kyung (Department of Information, Communication and Electronic Engineering, The Catholic University of Korea) ;
  • Park, Tae-Geun (Department of Information, Communication and Electronic Engineering, The Catholic University of Korea)
  • 정수경 (가톨릭대학교 정보통신전자공학부) ;
  • 박태근 (가톨릭대학교 정보통신전자공학부)
  • Published : 2009.11.25

Abstract

In this paper, we analyze the hardware architecture of Low Density Parity Check (LDPC) decoder using Log Likelihood Ration-Belief Propagation (LLR-BP) decoding algorithm. Various design issues that affect the decoding performance and the hardware complexity are discussed and the tradeoffs between the hardware complexity and the performance are analyzed. The message data for passing error probability is quantized to 7 bits and among them the fractional part is 4 bits. To maintain the decoding performance, the integer and fractional parts for the intrinsic information is 2 bits and 4 bits respectively. We discuss the alternate implementation of $\Psi$(x) function using piecewise linear approximation. Also, we improve the hardware complexity and the decoding time by applying overlapped scheduling.

본 논문은 LLR-BP 복호 알고리즘을 사용하는 LDPC 복호기의 하드웨어 구조 분석하고 효율적인 복호기의 설계 방법들을 제시하였다. 또한 설계 시 복호 성능 및 하드웨어 복잡도에 영향을 미칠 수 있는 다양한 설계 이슈들을 제시하고 복호 성능의 변화를 모의실험을 통하여 분석하였다. 오류확률을 전달하는 메시지의 양자화는 정수부 3비트, 소수부 4비트를 할당하였고, 복호 성능이 저하되지 않도록 사전정보에 정수부 2비트, 소수부 4비트를 할당하였으며 LUT로 구현되는 $\Psi$(x) 함수를 조합회로인 PWL 블록으로 대체하여 하드웨어 구조의 개선에 대해 논의하였다. 복호 시간을 단축하기 위하여 중첩 스케줄링을 적용하고, 각 복호기 구조 및 설계 변수들의 제한에 따른 하드웨어 자원을 비교함으로써, 하드웨어 복잡도를 분석하였다.

Keywords

References

  1. R. G. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Iriform Theory, Vol. IT-B, pp, 21-28, Jan. 1962
  2. J. C. Moreira and P. G. Farrell, Essentials of Error-Control Coding, John Wiley&Sons, 2006
  3. David J. C. MacKay et al, "Good error-correctiong codes based on very sparse matrices," IEEE Trans. on Iriform Theory, Vol. 45, pp. 399-431, Mar. 1999 https://doi.org/10.1109/18.748992
  4. K. S. Andrews, S. Dolinar, C. R. Jones, F. Pollara and J. Harnkins, "The Development of Turbo and LDPC Codes for Deep-Space Applications," Proceedings of IEEE, Vol. 95, no. 11, Nov. 2007 https://doi.org/10.1109/JPROC.2007.905132
  5. Joon-Sung Kim and Hong-Yeop Song, "Concatenated LDGM Codes with Single Decoder," IEEE Communimtions Letters, Vol. 10, no. 4, April. 2000
  6. T. J. Richardson and R. L. Urbanke, "The Capacity of Low-Density Parity-Check Codes Under Message-Passing Decoding," IEEE Trans. Iriform Theory, Vol. 47, pp. 599-618, Feb. 2001 https://doi.org/10.1109/18.910577
  7. Goddard Space Flight Center, GSFC-STD-9100, , Mar. 2008
  8. Keshab K. Parhi, VLSI Digital Signal Processing Systems Design and Implementation, John Wliey&Sons, 1999
  9. Daesun Oh and K. K. Parhi, "Low Complexity Decoder Architecture for Low-Density Parity-Check Codes," Journal of Signal Processing Systems, Apr. 2008 https://doi.org/10.1007/s11265-008-0231-5
  10. A. J Blanksby and Chris J Howland, "A 600-mW 1-Gb/s 1024-b, Rate-1/2 Low-Density Parity-Check Code Decoder," IEEE Solid-State Circuits, Vol. 37, no. 3, Mar. 2002
  11. Z. Wang and Z. Cui, "Low-Complexity High-Speed Design for Quasi-Cyclic LDPC Codes," IEEE Trans. VLSI Systems, Vol. 15, no. 1, Jan. 2007
  12. Marjan Karkooti and Joseph R. Cavallaro, "Semi-Parallel Reconfigurable Architectures for Real-Time LDPC Decoding," in Proc. of IEEE conf. on Information Technology: Coding and Computing, Vol. 1, pp. 579-585, Apr. 2004 https://doi.org/10.1109/ITCC.2004.1286526