• Title/Summary/Keyword: Electroless Ni

Search Result 309, Processing Time 0.022 seconds

Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition (무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향)

  • Choi Jae Woong;Hwang Gil Ho;Hong Seok Jun;Kang Sung Goon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

The Effect of Acid Treatment Time for Ni Plating on the Joint of α-Al2O3 and Ni Metal (α-Al2O3와 Ni 금속 접합을 위한 Ni 무전해 도금시 산처리의 영향)

  • YI, EUNJEONG;AN, YONGTAE;CHOI, BYUNGHYUN;JI, MIJUNG;HWANG, HAEJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.306-310
    • /
    • 2016
  • In Na-base Battery for ESS, ${\alpha}-Al_2O_3$ and metal bonding was used to prevent direct reaction between electrolyte and electrode. The hard metal was metalized at $1600^{\circ}C$ in a flowing hydrogen gas for high bonding strength. In this study, instead of hard metal metalizing, Ni was plated on ${\alpha}-Al_2O_3$ by electroless Ni plating technique and then bonded with metal. To enhance the bonding strength, surface of ${\alpha}-Al_2O_3$ was treated with $H_3PO_4$. The effects of strength and leakage of joining as a function of acid treatment time on ${\alpha}-Al_2O_3$ are described.

Comparative Study of Interfacial Reaction and Drop Reliability of the Sn-3.0Ag-0.5Cu Solder Joints on Electroless Nickel Autocatalytic Gold (ENAG) (Electroless Nickel Autocatalytic Gold (ENAG) 표면처리와 Sn-Ag-Cu솔더 간 접합부의 계면반응 및 취성파괴 신뢰성 비교 연구)

  • Jun, So-Yeon;Kwon, Sang-Hyun;Lee, Tae-Young;Han, Deog-Gon;Kim, Min-Su;Bang, Jung-Hwan;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.63-71
    • /
    • 2022
  • In this study, the interfacial reaction and drop impact reliability of Sn-Ag-Cu (SAC) solder and electroless nickel autocatalytic gold (ENAG) were studied. In addition, the solder joint properties with the ENAG surface finish was compared with electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). The IMC thickness of SAC/ENAG and SAC/ENEPIG were 1.15 and 1.12 ㎛, respectively, which were similar each other. The IMC thickness of the SAC/ENIG was 2.99 ㎛, which was about two times higher than that of SAC/ENAG. Moreover, it was found that the IMC thickness of the solder joint was affected by the metal turnover (MTO) condition of the electroless Ni(P) plating solution, and it was found that the IMC thickness increased when the MTO increased from 0 to 3. The shear strength of SAC/ENEPIG was the highest, followed by SAC/ENAG and SAC/ENIG. It was found that when the MTO increased, the shear strength was lowered. In terms of brittle fracture, SAC/ENEPIG was the lowest among the three joints, followed by SAC/ENAG and SAC/ENIG. Likewise, it was found that as MTO increased, brittle fracture increased. In the drop impact test, it was confirmed that the 0 MTO condition had a higher average number of failures than the 3 MTO condition, and the average number of failures was also higher in the order of SAC/ENEIG, SAC/ENAG, and SAC/ENIG. As a result of observing the fracture surface after the drop impact, it was found that the fracture was between the IMC and the Ni(P) layer.

Effects of Heat Treatment Conditions on the Interfacial Reactions and Crack Propagation Behaviors in Electroless Ni/electroplated Cr Coatings (열처리 조건에 따른 무전해 Ni/전해 Cr 이중도금의 계면반응 및 균열성장거동 분석)

  • Son, Kirak;Choi, Myung-Hee;Lee, Kyu Hawn;Byon, Eungsun;Rhee, Byong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.69-75
    • /
    • 2016
  • This study investigated the effect of heat treatment conditions not only on the Cr surface crack propagation behaviors but also on the Ni/Cr interfacial reaction characteristics in electroless Ni/electroplated Cr double coating layers on Cu substrate. Clear band layer of Ni-Cr solid solutions were developed at Ni/Cr interface after heat treatment at $750^{\circ}C$ for 6 h. Channeling cracks formed in Cr layer after 1 step heat treatment, that is, heat treatment after Ni/Cr plating, while little channeling cracks formed after 2 step heat treatment, that is, same heat treatments after Ni and Cr plating, respectively, due to residual stress relaxation due to crystallization of Ni layer before Cr plating.

NiWP, NiWPB, NiWPS Electroless Plating 내부식 특성 연구

  • Park, Suk-Hui;Hwang, Chung-Ho;Jo, Dae-Hyeong;Jeon, Jong-Tae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.128-129
    • /
    • 2013
  • Plasma 공정 부품의 경우, 기존 Anodizing 제품의 문제점을 개선하기 위해, 내마모, 내부식 특성이 우수한 NiWP를 적용하였다. 합금도금 종류에 따라 NiWP, NiWPB, NiWPS Electreolss laeyr 형성 후에 내부식 특성 거동 분석을 실시하였다. 그 결과 NiWP Electreoless layer가 높은 내부식 특성을 보였다.

  • PDF

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

Properties of Ni-P-SiC Composite Coating Layers Prepared by Electroless Plating Method (무전해도금법으로 형성한 Ni-P-SiC 복합도금막의 특성)

  • Lee, Hong-Kee;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.70-76
    • /
    • 2007
  • Ni-P-SiC composite coating layers were prepared by electroless plating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. The deposition rate was kept almost constant independent of the concentration of SiC in the plating solution and the codeposition of SiC in the composite coating layer increased with increased concentration of SiC in the plating solution except the early stage. Vickers microhardness increased with respect to the increased codeposition of SiC and the heat treatment at $300^{\circ}C$ in air for 1 hour. It was found that the wear volume decreased with increased up to 50 wt.% of SiC codeposition, and that friction coefficient increased gradually with increased codeposition of SiC. Considering the wear and the friction behaviors, the composite coating layer obtained by using 50 wt.% of SiC codeposition is desirable for the practical application for anti-wear and anti-friction coatings.

Measurement of Adhesion Strength and Nanoindentation of Metal Interconnections of Al/Ni and TiW/Ni Layers Formed on Glass Substrate (유리기판 위에 형성된 Al/Ni 및 TiW/Ni 다층 금속배선막의 계면 접합력 및 나노압입특성 평가)

  • Joe, Chul Min;Kim, Jae Ho;Hwang, So Ri;Yun, Yeo Hyeon;Oh, Yong Jun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1116-1122
    • /
    • 2010
  • Metal interconnections of multilayer Al/Ni and TiW/seed-Ni/Ni were formed on glass, and the adhesion strength and nanoindentation response of the composite layers were evaluated. The Al/Ni multilayer was formed by an anodic bonding of glass to Al and subsequent electroless plating of Ni, while the TiW/Ni multilayer was fabricated by sputter deposition of TiW and seed-Ni onto glass and electroless plating of Ni. Because of the diffusion of aluminum into glass during the anodic bonding, anodically bonded glass/Al joint exhibited greater interfacial strength than the sputtered glass/TiW one. The Al/Ni on glass also showed excellent resistance against delamination by bending deformation compared to the TiW/seed-Ni/Ni on glass. From the nanoindentation experiment of each metal layer on glass, it was found that the aluminum layer had extremely low hardness and elastic modulus similar to the glass substrate and played a beneficial role in the delamination resistance by lessening stress intensification at the joint. The indentation data of the multilayers also supported superior joint reliability of the Al/Ni to glass compared to that of the TiW/seed-Ni/Ni to glass.

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.