Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00654

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode  

Kang, Hyeong-Ku (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 155-164 More about this Journal
Abstract
Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.
Keywords
Cellulose paper; Fiber; Electroless Coating; Nickel Phosphide; Lithium Battery;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Liu, J. Feng, X. Bian, J. Liu and H. Xu, RSC Adv., 2015, 5(75), 60870-60875.   DOI
2 W.-S Choi, W. -Y Chang and H. -C Shin, J. Solid State Electrochem., 2014, 18(2), 427-433.   DOI
3 D. Souza, V. Pralong, A. Jacobson and L. Nazar, Science, 2002, 296(5575), 2012-2015.   DOI
4 J. O. Besenhard, M. Winter, J.Yang and W. Biberacher, J. Power Sources, 1995, 54(2), 228-231.   DOI
5 A. Ponrouch, P. L. Taberna, P. Simon and M. R. Palacin, Electrochim. Acta, 2012, 61, 13-18.   DOI
6 X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong and G. Shen, Adv. Mater., 2014, 26(28), 4763-4782.   DOI
7 G. A. Snook, P. Kao and A. S. Best, J. Power Sources, 2011, 196(1), 1-12.   DOI
8 C. Renault, K. Scida, K. N. Knust, S. E. Fosdick and R. M. Crooks, J. Electrochem. Sci. Technol., 2013, 4(4), 146-152.   DOI
9 L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. -W. Choi, S. -M Han and Y. Cui, Nano Lett., 2010, 10(2), 708-714.   DOI
10 F. Sharifi, S. Ghobadian, F. R. Cavalcanti and N. Hashemi, Renewable Sustainable Energy Rev., 2015, 52, 1453-1472.   DOI
11 S.M.A. Shibli and R. Manu, Surf. Coat. Technol., 2005, 197(1), 103-108.
12 L. Hu, PNAS., 2009, 106(51), 21490-21494.   DOI
13 L. Nyholm, G. Nystrom, A. Mihranyan and M. Stromme, Adv. Mater., 2011, 23(33), 3751-3769.   DOI
14 M. Latifatu, C. Y. Bon, K. -S Lee, L. Hamenu, Y. -I Kim, Y. -J Lee, Y. -M Lee and J. -M. Ko, J. Electrochem. Sci. Technol., 2018, 9(4), 330-338.   DOI
15 Z. Weng, Y. Su, D. Wang, F. Li, J. Du and H. Cheng, Adv. Energy Mater., 2011, 1(5), 917-922.   DOI
16 L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie and G. Yu, Nano Lett., 2013, 13(5), 2151-2157.   DOI
17 C. Lin and T. Wu, Electrochemistry, 2016, 84(2), 87-91.   DOI
18 H. -K Kim and H. -C Shin, J. Electrochem. Sci. Technol., 2018, 9(1), 78-83.   DOI
19 S. -Y Cheon, S. -Y Park, Y. -M Rhym, D. -H Kim, Y. -S Koo and J. -H Lee, J. Electrochem. Sci. Technol., 2010, 1(2), 117-120.   DOI
20 G. O. Mallory and J. B. Hajdu, Electroless plating fundamentals and applications, first ed., AESF, 1990.
21 J. Li, J. Li, X. Zhou, Z. Xia, W. Gao, Y. Ma and Y. Qu, ACS Appl. Mater. Interfaces, 2016, 8(17), 10826-10834.   DOI
22 K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li and S. Chen, Adv. Funct. Mater., 2015, 25(48), 7530-7538.   DOI
23 M. Wu, J. Bai, Y. Wang, A. Wang, X. Lin, L. Wang, Y. Shen, Z. Wang, A. Hagfeldt and T. Ma, J. Mater. Chem., 2012, 22(22), 11121-11127.   DOI
24 Y. Lu, C. D. Gua, X. Ge, H. Zhang, S. Huang, X. Y. Zhao, X. L. Wang, J. P. Tu and S. X. Mao, Electrochim. Acta, 2013, 112, 212-220.   DOI
25 Y.-H. Lee, J.-S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T.-S. Kim and J.-Y. Lee, Nano Lett., 2013, 13(11), 5753-5761.   DOI
26 J. Y. Xiang, X. L. Wang, X. H. Xia, J. Zhong and J. P. Tu, J. Alloys Compd., 2011, 509(1), 157-160.   DOI
27 O. -H. Kwon and H. -C. Kim, J. Korea TAPPI, 2012, 44(2), 1-7.
28 J.-S. Kim, Y.-H. Lee, I. Lee, T.-S. Kim, M.-H. Ryou and J. W. Choi, J. Mater. Chem. A, 2014, 2(28), 10862-10868.   DOI
29 B. S. Choudhury, R. S. Sen, B. Oraon and G. Majumdar, Surf. Eng., 2009, 25(5), 410-414.   DOI
30 H. -T Yeom, Plating and surface finishing, first ed., Munundang, 2018.
31 L. M. Abrantes, A. Fundoa and G. Jin, J. Mater. Chem., 2001, 11(1), 200-203.   DOI
32 B. Tang, Y. Wang, L. Wang, X. Wang, H. Liu, Y. Yu and T. Sun, Surf. Coat. Technol., 2004, 186(1-2), 153-156.   DOI
33 J. Fullenwarth, A. Darwiche, A. Soares, B. Donnadieu and L. Monconduit, J. Mater. Chem., 2014, 2(7), 2050-2059.   DOI
34 J. Y. Xiang, X. L. Wang. J. Zhong, D. Zhang and J. P. Tu, J. Power Sources, 2011, 196(1), 379-385.   DOI
35 D. Goldbaum, J. M. Shockley, R. R. Chromik, A. Rezaeian, S. Yue, J. Legoux and E. Irissou, J. Therm. Spray Technol., 2012, 21(2), 288-303.   DOI
36 S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, and J. M. Tarascon, J. Electrochem. Soc., 2001, 148(4), A285-A292.   DOI
37 R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau and J.-M. Tarascon, Chem. Mater., 2004, 16(6), 1056-1061.   DOI
38 J. Cabana, L. Monconduit, D. Larcher and M. R. Palacin, Adv. Mater., 2010, 22, E170-E192.   DOI