DOI QR코드

DOI QR Code

니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications

  • 김동원 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 권구현 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 김경태 (한국기계연구원 부설 재료연구소 분말기술연구실)
  • Kim, Dong Won (Powder Technology Department, Korea Institute of Materials Science) ;
  • Kwon, Gu Hyun (Powder Technology Department, Korea Institute of Materials Science) ;
  • Kim, Kyung Tae (Powder Technology Department, Korea Institute of Materials Science)
  • 투고 : 2017.04.26
  • 심사 : 2017.05.22
  • 발행 : 2017.06.28

초록

In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

키워드

참고문헌

  1. K. T. Kim, D. W. Kim, C. K. Kim and Y. J. Choi : Mater. Lett., 167 (2016) 262. https://doi.org/10.1016/j.matlet.2016.01.003
  2. X. Guo, X. Li, H. Li, D. Zhang, C. Lai and W. Li. : Surf. Coat. Technol., 265 (2015) 83. https://doi.org/10.1016/j.surfcoat.2015.01.056
  3. S. Lee, J. Lim, K. Noh and W. Yoon: J. of KSPE, 18 (2014) 9. https://doi.org/10.6108/KSPE.2014.18.4.009
  4. R. A. Yetter, G. A. Risha. and S. F. Son : Proc. Combust. Inst., 32 (2009) 1819. https://doi.org/10.1016/j.proci.2008.08.013
  5. M. L. Pantoya, and S. W. Dean : Thermochim. Acta, 493 (2009) 109. https://doi.org/10.1016/j.tca.2009.03.018
  6. N. A. Clayton, S. Keerti, K, M. L. Pantoya, S. C. Kettwich and S. T. Iacono: ACS Appl. Mater. Interfaces, 6 (2014) 6049. https://doi.org/10.1021/am404583h
  7. J. McCollum, M. L. Pantoya and S. T. Iacono : ACS Appl. Mater. Interfaces, 7 (2015) 18742. https://doi.org/10.1021/acsami.5b05238
  8. V. Rosenband, and A. Gany : Int. J. Energ. mater. Chem. Propul., 10 (2010) 42.
  9. T. J. Foley, C. E. Johnson and K. T. Higa : Chem. Mater., 17 (2005) 4086. https://doi.org/10.1021/cm047931k
  10. C. Yang : Appl. Phys. A: Mater. Sci. Process., 114 (2014) 459. https://doi.org/10.1007/s00339-013-7666-7
  11. Y. Yavor, V. Rosenband and A. Gany : Int. J. Energ. mater. Chem. Propul., 9 (2010) 477.
  12. S. L. Vummidi, Y. Aly, M. Schoenitz and E. L. Dreizin : J. Propul. Power, 26 (2010) 454. https://doi.org/10.2514/1.47092
  13. K. T. Kim, D. W. Kim, S. H. Kim, C. K. Kim and Y. J. Choi: Appl. Surf. Sci., DOI: 10.1016/j/apsusc, (2016).
  14. G. O. Mallory : Electroless Plating: Fundamentals and Applications, J.B. Hajdu (Ed.), AESFS, Orlando, Florida (1990) 3.