Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.12.1116

Measurement of Adhesion Strength and Nanoindentation of Metal Interconnections of Al/Ni and TiW/Ni Layers Formed on Glass Substrate  

Joe, Chul Min (Dept. of Mat. Sci. & Eng., Hanbat National University)
Kim, Jae Ho (Dept. of Mat. Sci. & Eng., Hanbat National University)
Hwang, So Ri (Dept. of Mat. Sci. & Eng., Hanbat National University)
Yun, Yeo Hyeon (Dept. of Mat. Sci. & Eng., Hanbat National University)
Oh, Yong Jun (Dept. of Mat. Sci. & Eng., Hanbat National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.12, 2010 , pp. 1116-1122 More about this Journal
Abstract
Metal interconnections of multilayer Al/Ni and TiW/seed-Ni/Ni were formed on glass, and the adhesion strength and nanoindentation response of the composite layers were evaluated. The Al/Ni multilayer was formed by an anodic bonding of glass to Al and subsequent electroless plating of Ni, while the TiW/Ni multilayer was fabricated by sputter deposition of TiW and seed-Ni onto glass and electroless plating of Ni. Because of the diffusion of aluminum into glass during the anodic bonding, anodically bonded glass/Al joint exhibited greater interfacial strength than the sputtered glass/TiW one. The Al/Ni on glass also showed excellent resistance against delamination by bending deformation compared to the TiW/seed-Ni/Ni on glass. From the nanoindentation experiment of each metal layer on glass, it was found that the aluminum layer had extremely low hardness and elastic modulus similar to the glass substrate and played a beneficial role in the delamination resistance by lessening stress intensification at the joint. The indentation data of the multilayers also supported superior joint reliability of the Al/Ni to glass compared to that of the TiW/seed-Ni/Ni to glass.
Keywords
thin films; sputtering; interfaces; indentation; anodic bonding;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. Joshi, Microelectronics Journal 29, 343 (1998).   DOI   ScienceOn
2 M. J. Yim, J. Hwang, and K.W. Paik, International Journal of Adhesion and Adhesives 27, 77 (2007).   DOI   ScienceOn
3 P. Benjamin and C. Weaver, Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 261, 516 (1961).   DOI
4 G. Wallis and D. I. Pomerantz, J. of Applied Physics 40, 3946 (1969).   DOI
5 K. Schjolberg-Henriksen, E. Poppe, S. Moe, P. Storas, M. M. V. Taklo, D. T. Wang, and H. Jakobsen, Microsyst Technol. 12, 441 (2006).   DOI   ScienceOn
6 A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, Sensors and Actuators 82, 224 (2000).   DOI   ScienceOn
7 Y. Q. Hu, Y. P. Zhao, and T. Yu, Microelectronics Reliability 48, 1720 (2008).   DOI   ScienceOn
8 P. Nitzsche, K. Lange, B. Schmidt, S. Grigull, U. Kreissig, B. Thomas, and K. Herzog, J. Electrochem. Soc. 145, 1755 (1998).   DOI   ScienceOn
9 Y. Q. Hu, Y. P. Zhao, and T. Yu, Mater. Sci. Eng. A 483-484, 611 (2008).   DOI   ScienceOn
10 M. Takahashi, H. Yasuda, and K. Ikeuchi, Solid State Ionics 172, 335 (2004).   DOI   ScienceOn
11 L. E. S. Rohwer, A. D. Oliver, and M. V. Collins, Proc. Mat. Res. Soc. Symp. Proc. 729, p.U.5.7.1 (2002).
12 Q. Xing and G. Sasaki, Solid State Ionics 178, 179 (2007).   DOI   ScienceOn
13 D. Briand, P. Weber, and N. F. de Rooij, Proc. 23th Int. Conf. on Solid State Sensors, Actuators and Microsystems, p.1824, Boston (2003).
14 W. C. Oliver and Pharr, J. Mater. Res. 7, 1564 (1992).   DOI
15 S. Chen, L. Liu, and T. Wang, Surface & Technology 191, 25 (2005).   DOI   ScienceOn
16 N. X. Randall, Phil. Mag. A 82, 1883 (2002).   DOI   ScienceOn
17 Y. G. Jung, B. R. Lawn, M. Martyniuk, H. Huang, and X. Z. Hu, J. Mater. Res. 19, 3076 (2004).   DOI   ScienceOn
18 P. Peeters, G. V. D. Hoorn, T. Daenen, A. Kurowski, and G. Staikov, Electrochimica Acta 47, 161 (2001).   DOI   ScienceOn