DOI QR코드

DOI QR Code

Measurement of Adhesion Strength and Nanoindentation of Metal Interconnections of Al/Ni and TiW/Ni Layers Formed on Glass Substrate

유리기판 위에 형성된 Al/Ni 및 TiW/Ni 다층 금속배선막의 계면 접합력 및 나노압입특성 평가

  • Joe, Chul Min (Dept. of Mat. Sci. & Eng., Hanbat National University) ;
  • Kim, Jae Ho (Dept. of Mat. Sci. & Eng., Hanbat National University) ;
  • Hwang, So Ri (Dept. of Mat. Sci. & Eng., Hanbat National University) ;
  • Yun, Yeo Hyeon (Dept. of Mat. Sci. & Eng., Hanbat National University) ;
  • Oh, Yong Jun (Dept. of Mat. Sci. & Eng., Hanbat National University)
  • 조철민 (한밭대학교 신소재공학부) ;
  • 김재호 (한밭대학교 신소재공학부) ;
  • 황소리 (한밭대학교 신소재공학부) ;
  • 윤여현 (한밭대학교 신소재공학부) ;
  • 오용준 (한밭대학교 신소재공학부)
  • Received : 2010.08.10
  • Published : 2010.12.25

Abstract

Metal interconnections of multilayer Al/Ni and TiW/seed-Ni/Ni were formed on glass, and the adhesion strength and nanoindentation response of the composite layers were evaluated. The Al/Ni multilayer was formed by an anodic bonding of glass to Al and subsequent electroless plating of Ni, while the TiW/Ni multilayer was fabricated by sputter deposition of TiW and seed-Ni onto glass and electroless plating of Ni. Because of the diffusion of aluminum into glass during the anodic bonding, anodically bonded glass/Al joint exhibited greater interfacial strength than the sputtered glass/TiW one. The Al/Ni on glass also showed excellent resistance against delamination by bending deformation compared to the TiW/seed-Ni/Ni on glass. From the nanoindentation experiment of each metal layer on glass, it was found that the aluminum layer had extremely low hardness and elastic modulus similar to the glass substrate and played a beneficial role in the delamination resistance by lessening stress intensification at the joint. The indentation data of the multilayers also supported superior joint reliability of the Al/Ni to glass compared to that of the TiW/seed-Ni/Ni to glass.

Keywords

Acknowledgement

Supported by : 한국산업기술진흥원

References

  1. R. Joshi, Microelectronics Journal 29, 343 (1998). https://doi.org/10.1016/S0026-2692(97)00071-2
  2. M. J. Yim, J. Hwang, and K.W. Paik, International Journal of Adhesion and Adhesives 27, 77 (2007). https://doi.org/10.1016/j.ijadhadh.2005.12.006
  3. P. Benjamin and C. Weaver, Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 261, 516 (1961). https://doi.org/10.1098/rspa.1961.0093
  4. G. Wallis and D. I. Pomerantz, J. of Applied Physics 40, 3946 (1969). https://doi.org/10.1063/1.1657121
  5. K. Schjolberg-Henriksen, E. Poppe, S. Moe, P. Storas, M. M. V. Taklo, D. T. Wang, and H. Jakobsen, Microsyst Technol. 12, 441 (2006). https://doi.org/10.1007/s00542-005-0040-8
  6. A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, Sensors and Actuators 82, 224 (2000). https://doi.org/10.1016/S0924-4247(99)00376-3
  7. Y. Q. Hu, Y. P. Zhao, and T. Yu, Microelectronics Reliability 48, 1720 (2008). https://doi.org/10.1016/j.microrel.2008.04.016
  8. P. Nitzsche, K. Lange, B. Schmidt, S. Grigull, U. Kreissig, B. Thomas, and K. Herzog, J. Electrochem. Soc. 145, 1755 (1998). https://doi.org/10.1149/1.1838553
  9. Y. Q. Hu, Y. P. Zhao, and T. Yu, Mater. Sci. Eng. A 483-484, 611 (2008). https://doi.org/10.1016/j.msea.2006.09.155
  10. M. Takahashi, H. Yasuda, and K. Ikeuchi, Solid State Ionics 172, 335 (2004). https://doi.org/10.1016/j.ssi.2004.02.071
  11. L. E. S. Rohwer, A. D. Oliver, and M. V. Collins, Proc. Mat. Res. Soc. Symp. Proc. 729, p.U.5.7.1 (2002).
  12. Q. Xing and G. Sasaki, Solid State Ionics 178, 179 (2007). https://doi.org/10.1016/j.ssi.2006.12.012
  13. D. Briand, P. Weber, and N. F. de Rooij, Proc. 23th Int. Conf. on Solid State Sensors, Actuators and Microsystems, p.1824, Boston (2003).
  14. W. C. Oliver and Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
  15. S. Chen, L. Liu, and T. Wang, Surface & Technology 191, 25 (2005). https://doi.org/10.1016/j.surfcoat.2004.03.037
  16. N. X. Randall, Phil. Mag. A 82, 1883 (2002). https://doi.org/10.1080/01418610208235700
  17. Y. G. Jung, B. R. Lawn, M. Martyniuk, H. Huang, and X. Z. Hu, J. Mater. Res. 19, 3076 (2004). https://doi.org/10.1557/JMR.2004.0380
  18. P. Peeters, G. V. D. Hoorn, T. Daenen, A. Kurowski, and G. Staikov, Electrochimica Acta 47, 161 (2001). https://doi.org/10.1016/S0013-4686(01)00546-1