Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.3.242

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications  

Kim, Dong Won (Powder Technology Department, Korea Institute of Materials Science)
Kwon, Gu Hyun (Powder Technology Department, Korea Institute of Materials Science)
Kim, Kyung Tae (Powder Technology Department, Korea Institute of Materials Science)
Publication Information
Journal of Powder Materials / v.24, no.3, 2017 , pp. 242-247 More about this Journal
Abstract
In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.
Keywords
Aluminum; Electroless plating; Nickel; Powders; SHS reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. T. Kim, D. W. Kim, C. K. Kim and Y. J. Choi : Mater. Lett., 167 (2016) 262.   DOI
2 X. Guo, X. Li, H. Li, D. Zhang, C. Lai and W. Li. : Surf. Coat. Technol., 265 (2015) 83.   DOI
3 S. Lee, J. Lim, K. Noh and W. Yoon: J. of KSPE, 18 (2014) 9.   DOI
4 R. A. Yetter, G. A. Risha. and S. F. Son : Proc. Combust. Inst., 32 (2009) 1819.   DOI
5 M. L. Pantoya, and S. W. Dean : Thermochim. Acta, 493 (2009) 109.   DOI
6 N. A. Clayton, S. Keerti, K, M. L. Pantoya, S. C. Kettwich and S. T. Iacono: ACS Appl. Mater. Interfaces, 6 (2014) 6049.   DOI
7 J. McCollum, M. L. Pantoya and S. T. Iacono : ACS Appl. Mater. Interfaces, 7 (2015) 18742.   DOI
8 V. Rosenband, and A. Gany : Int. J. Energ. mater. Chem. Propul., 10 (2010) 42.
9 T. J. Foley, C. E. Johnson and K. T. Higa : Chem. Mater., 17 (2005) 4086.   DOI
10 C. Yang : Appl. Phys. A: Mater. Sci. Process., 114 (2014) 459.   DOI
11 Y. Yavor, V. Rosenband and A. Gany : Int. J. Energ. mater. Chem. Propul., 9 (2010) 477.
12 K. T. Kim, D. W. Kim, S. H. Kim, C. K. Kim and Y. J. Choi: Appl. Surf. Sci., DOI: 10.1016/j/apsusc, (2016).
13 G. O. Mallory : Electroless Plating: Fundamentals and Applications, J.B. Hajdu (Ed.), AESFS, Orlando, Florida (1990) 3.
14 S. L. Vummidi, Y. Aly, M. Schoenitz and E. L. Dreizin : J. Propul. Power, 26 (2010) 454.   DOI