• Title/Summary/Keyword: E-convex

Search Result 195, Processing Time 0.024 seconds

QUASI STRONGLY E-CONVEX FUNCTIONS WITH APPLICATIONS

  • Hussain, Askar;Iqbal, Akhlad
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1077-1089
    • /
    • 2021
  • In this article, we introduce the quasi strongly E-convex function and pseudo strongly E-convex function on strongly E-convex set which generalizes strongly E-convex function defined by Youness [10]. Some non trivial examples have been constructed that show the existence of these functions. Several interesting properties of these functions have been discussed. An important characterization and relationship of these functions have been established. Furthermore, a nonlinear programming problem for quasi strongly E-convex function has been discussed.

SOME NEW ESTIMATES FOR EXPONENTIALLY (ħ, m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS

  • Rashid, Saima;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.843-860
    • /
    • 2019
  • In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for the exponentially (ħ, m)-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.

A NEW LOWER BOUND FOR THE VOLUME PRODUCT OF A CONVEX BODY WITH CONSTANT WIDTH AND POLAR DUAL OF ITS p-CENTROID BODY

  • Chai, Y.D.;Lee, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.403-408
    • /
    • 2012
  • In this paper, we prove that if K is a convex body in $E^n$ and $E_i$ and $E_o$ are inscribed ellipsoid and circumscribed ellipsoid of K respectively with ${\alpha}E_i=E_o$, then $\[({\alpha})^{\frac{n}{p}+1}\]^n{\omega}^2_n{\geq}V(K)V({\Gamma}^{\ast}_pK){\geq}\[(\frac{1}{\alpha})^{\frac{n}{p}+1}\]^n{\omega}^2_n$. Lutwak and Zhang[6] proved that if K is a convex body, ${\omega}^2_n=V(K)V({\Gamma}_pK)$ if and only if K is an ellipsoid. Our inequality provides very elementary proof for their result and this in turn gives a lower bound of the volume product for the sets of constant width.

CONVERGENCE OF VISCOSITY APPROXIMATIONS TO FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.81-95
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T\;:\;C\;{\rightarrow}\;E$ a nonexpansive mapping satisfying the weak inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For $f\;:\;C\;{\rightarrow}\;C$ a contraction and $t\;{\in}\;(0,\;1)$, let $x_t$ be a unique fixed point of a contraction $T_t\;:\;C\;{\rightarrow}\;E$, defined by $T_tx\;=\;tf(x)\;+\;(1\;-\;t)Tx$, $x\;{\in}\;C$. It is proved that if {$x_t$} is bounded, then $x_t$ converges to a fixed point of T, which is the unique solution of certain variational inequality. Moreover, the strong convergence of other implicit and explicit iterative schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm.

  • PDF

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • v.6 no.1
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF