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CONVERGENCE OF VISCOSITY APPROXIMATIONS TO
FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS

IN BANACH SPACES

Jong Soo Jung

Abstract. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of E,
and T : C → E a nonexpansive mapping satisfying the weak inwardness

condition. Assume that every weakly compact convex subset of E has
the fixed point property. For f : C → C a contraction and t ∈ (0, 1),
let xt be a unique fixed point of a contraction Tt : C → E, defined by
Ttx = tf(x) + (1 − t)Tx, x ∈ C. It is proved that if {xt} is bounded,

then xt converges to a fixed point of T , which is the unique solution of
certain variational inequality. Moreover, the strong convergence of other
implicit and explicit iterative schemes involving the sunny nonexpansive
retraction is also given in a reflexive and strictly convex Banach space

with a uniformly Gâteaux differentiable norm.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset
of E. Recall that a mapping f : C → C is a contraction on C if there exists a
constant k ∈ (0, 1) such that ∥f(x) − f(y)∥ ≤ k∥x − y∥, x, y ∈ C. We use ΣC

to denote the collection of all contractions on C. That is, ΣC = {f : f : C →
C a contraction}. Note that each f ∈ ΣC has a unique fixed point in C.

Now let T : C → C be a nonexpansive mapping (recall that a mapping
T : C → C is nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥, x, y ∈ C) and F (T )
denote the set of fixed points of T ; that is, F (T ) = {x ∈ C : x = Tx}.

Given a real number t ∈ (0, 1), a contraction f ∈ ΣC and a nonexpasive
mapping T , let a contraction Tt := T f

t : C → C be defined by

(1.1) Ttx = tf(x) + (1 − t)Tx, ∀x ∈ C.
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and let xt := xf
t ∈ C be the unique fixed point of Tt. Then xt is the unique

solution of the fixed point equation

(1.2) xt = tf(xt) + (1 − t)Txt.

A special case of (1.2) has been considered by Browder [2] in a Hilbert space
as follows. Fix u ∈ C and define a contraction Gt on C by

Gtx = tu + (1 − t)Tx, ∀x ∈ C.

Let zt ∈ C be the unique fixed point of Gt. Thus

(1.3) zt = tu + (1 − t)Tzt.

(Such a sequence {zt} is said to be an approximating fixed point of T since it
possesses the property that if {xt} is bounded, then limt→0 ∥Tzt − zt∥ = 0.) In
1967, the strong convergence of {zt} as t → 0 for a self-mapping T of a bounded
C was proved in a Hilbert space independently by Browder [2] and Halpern [7].
In 1980, Reich [18] extended the result of Browder [2] to a uniformly smooth
Banach space. Ha and Jung [6] and Takahashi and Ueda [22] improved results of
Reich [18] to a reflexive Banach space with a uniformly Gâteaux differentiable
norm. Thereafter, Singh and Waston [19] extended result of Browder and
Halpern to a nonexpansive nonself-mapping T satisfying Rothe’s boundary
condition : T (∂C) ⊂ C (here ∂C denotes the boundary of C). In 1995, Xu
and Yin [27] proved that if C is a nonempty closed convex (not necessarily
bounded) subset of Hilbert space H, if T : C → H is a nonexpansive nonself-
mapping, and if {zt} is the sequence defined by (1.3) which is bounded, then
{zt} converges strongly as t → 1 to a fixed point of T . They also studied other
schemes involving the nearest point projection P from H onto C, which were
introduced by Marino and Trombetta [15]. Jung and Kim [10], Jung and Kim
[11], Kim and Takahashi [13] and Xu [24] extended the corresponding results
of Xu and Yin [27] to Banach space settings.

On the other hand, the viscosity approximation method of selecting a par-
ticular fixed point of a given nonexpansive mapping was proposed by Moudafi
[16]. In 2004, in order to extend Theorem 2.2 of Moudafi [16] to a Banach
space setting, Xu [26] consider the the following explicit iterative scheme: for
T : C → C nonexpansive mappings, f ∈ ΣC and λn ∈ (0, 1),

xn+1 = λnf(xn) + (1 − λn)Txn, ∀n ≥ 0.

Moreover, in [26], he also studied the strong convergence of xt defined by (1.2)
as t → 0 in either a Hilbert space or a uniformly smooth Banach space and
showed that the strong limt→0 xt is the unique solution of certain variational
inequality. This result of Xu [26] also improved Theorem 2.1 of Moudafi [16] as
the continuous version. Very recently, using the sunny nonexpansive retraction
Q from E onto C and T : C → E nonexpansive nonself-mappings, Song and
Chen [20] considered the implicit iterative scheme

yt = Q(tf(yt) + (1 − t)Tyt)
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and the explicit iterative scheme

yn+1 = Q(λnf(yn) + (1 − λn)Tyn), ∀n ≥ 0,

and improved the results of Xu [26] to the case of nonself-mapping in a reflexive
Banach space with a weakly sequentially continuous duality mapping.

In this paper, we establish the strong convergence of {xt} defined by (1.2) for
T : C → E nonexpansive nonself-mapping in a uniformly convex Banach space
with a uniformly Gâteaux differentiable norm, thus generalizing the results of
Xu [26] (and Moudafi [16]) to the case of nonself-mappings. We also study the
strong convergence of the implicit iterative scheme:

xt = tf(xt) + (1 − t)QTxt

and the explicit iterative scheme:

xn+1 = λnf(xn) + (1 − λn)QTxn, ∀n ≥ 0

for the sunny nonexpansive retraction Q from E onto C and T : C → E
nonexpansive nonself-mapping in a reflexive and strictly Banach space with a
uniformly Gâteaux differentiable norm. Our results improve the corresponding
results in Jung and Kim [10], Jung and Kim [11], Moudafi [16], Xu [24], Xu
and Yin [27] and others.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be its dual. The
value of x∗ ∈ E∗ at x ∈ E will be denoted by (x, x∗).

A Banach space E is called strictly convex if its unit sphere U = {x ∈ E :
∥x∥ = 1} does not contain any linear segment. For every ε with 0 ≤ ε ≤ 2, the
modulus δ(ε) of convexity of E is defined by

δ(ε) = inf{1 − ∥x + y

2
∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x − y∥ ≥ ε}.

E is said to be uniformly convex if δ(ε) > 0 for every ε > 0. If E is uniformly
convex, then E is reflexive and strictly convex.

The following lemma is well-known [1, p. 79].

Lemma 2.1. Let C be a closed convex of a reflexive and strictly convex Banach
space E. Then Co = {x ∈ C : ∥x∥ = inf{∥y∥ : y ∈ C}} is a singleton.

The norm of E is said to be Gâteaux differentiable (and E is said to be
smooth) if

(2.1) lim
t→0

∥x + ty∥ − ∥x∥
t

exists for each x, y in its unit sphere U = {x ∈ E : ∥x∥ = 1}. It is said to be
uniformly Gâteaux differentiable if each y ∈ U , this limit is attained uniformly
for x ∈ U . Finally, the norm is said to be uniformly Fréchet differentiable (and
E is said to be uniformly smooth) if the limit in (2.1) is attained uniformly
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for (x, y) ∈ U × U . Since the dual E∗ of E is uniformly convex if and only if
the norm of E is uniformly Fréchet differentiable, every Banach space with a
uniformly convex dual is reflexive and has a uniformly Gâteaux differentiable
norm. The converse implication is false. A discussion of these and related
concepts may be found in [3, 17].

The (normalized) duality mapping J from E into the family of nonempty
(by Hahn-Banach theorem) weak-star compact subsets of its dual E∗ is defined
by

J(x) = {f ∈ E∗ : (x, f) = ∥x∥2 = ∥f∥2}.
for each x ∈ E. It is single valued if and only if E is smooth. It is also well-
known that if E has a uniformly Gâteaux differentiable norm, J is uniformly
continuous on bounded subsets of E from the strong topology of E to the weak-
star topology of E∗. Suppose that J is single valued. Then J is said to be weakly
sequentially continuous if, for each {xn} ∈ E with xn ⇀ x, J(xn) ∗

⇀ J(x) ([5]).

We need the following lemma for the proof of our main results, which was
also given in Jung and Morales [12].

Lemma 2.2. Let X be a Banach space and J the normalized duality mapping.
Then, for any given x, y ∈ X, we have

∥x + y∥2 ≤ ∥x∥2 + 2⟨y, j(x + y)⟩, ∀j(x + y) ∈ J(x + y).

Let µ be a continuous linear functional on l∞ and (a0, a1, · · · ) ∈ l∞. We
write un(an) instead of µ((a0, a1, · · · )). µ is said to be Banach limit if µ satisfies
∥µ∥ = µn(1) = 1 and un(an+1) = µn(an) for all (a0, a1, · · · ) ∈ l∞. We know
that if µ is a Banach limit, then lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for
every a = (a1, a2, ...) ∈ ℓ∞.

Let {xn} be a bounded sequence in E. Then we can define the real valued
continuous convex function ϕ on E by

ϕ(z) = µn∥xn − z∥2, ∀z ∈ E.

The following lemma which was given in [6, 22] is, in fact, a variant of
Lemma 1.3 in [17].

Lemma 2.3. Let C be a nonempty closed convex subset of a Banach space E
with a uniformly Gâteaux differentiable norm and {xn} a bounded sequence in
E. Let µ be a Banach limit and u ∈ C. Then

µn∥xn − u∥2 = min
y∈C

µn∥xn − y∥2

if and only if µn(x − u, J(xn − u)) ≤ 0 for all x ∈ C.

We also need the following result which was essentially proved by Takahashi
and Jeong [21] (see also [10, 11]).
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Lemma 2.4. Let E be a uniformly convex Banach space, C a nonempty closed
convex subset of E, and {xn} a bounded sequence of E. Then the set

M = {u ∈ C : µn∥xn − u∥2 = min
z∈C

µn∥xn − z∥2}

consists of one point.

Recall that a closed convex subset C of E is said to have the fixed point
property for nonexpansive self-mappings (FPP for short) if every nonexpansive
mapping T : C → C has a fixed point, that is, there is a point p ∈ C such
that Tp = p. It is well-known that every bounded closed convex subset of a
uniformly convex Banach space has the FPP (cf. [4, p. 22]).

Let D be a subset of C. Then a mapping Q : C → D is said to be retraction
from C onto D if Qx = x for all x ∈ D. A retraction Q : C → D is said to be
sunny if Q(Qx + t(x − Qx)) = Qx for all t ≥ 0 and Qx + t(x − Qx) ∈ C. A
sunny nonexpansive retraction is a sunny retraction which is also nonexpansive.
Sunny nonexpansive retractions are characterized as follows [4, p. 48]: If E is
a smooth Banach space, then Q : C → D is a sunny nonexpansive retraction
in and only if the following inequality

(2.2) ⟨x − Qx, J(z − Qx)⟩ ≤ o, ∀x ∈ C, z ∈ D.

Let IC(x) be the inward set of a closed convex subset C of E at x given by

IC(x) = {z ∈ E : z = x + λ(y − x) for some y ∈ C, λ ≥ 0}.

A nonself-mapping T : C → E is said to satisfy the inwardness condition if
Tx ∈ IC(x) for all x ∈ C and respectively, to satisfy the weak inwardness
condition if Tx ∈ IC(x) for all x ∈ C, where IC(x) is the closure of IC(x) in
the norm topology. Every self-mapping is trivially weakly inward.

Using the proof of Theorem 2 in Jung and Kim [10], we prove the following
lemma.

Lemma 2.5. Let E be a smooth Banach space and C a nonempty closed
convex subset of E which is also a sunny nonexpansive retract of E with Q as
the sunny nonexpansive retraction. Let T : C → E be a mapping satisfying the
weak inwardness condition. Then F (T ) = F (QT ).

Proof. It is clear that F (T ) ⊂ F (QT ). To show F (QT ) ⊂ F (T ), let z ∈ F (QT ).
Since Q is a suuny nonexpansive retraction, by (2.2), we have

⟨z − Tz, J(z − y)⟩ ≤ 0, ∀y ∈ C

On the other hand, Tz ∈ IC(z) by the weak inwardness condition. Hence for
each integer n ≥ 1, there exists zn ∈ C and αn ≥ 0 such that

yn := z + αn(zn − z) → Tz (n → ∞).
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Since the duality mapping J in smooth space is norm to weak∗ continuous, it
follows that

0 ≤ αn⟨Tz − z, J(zn − z)⟩ = ⟨Tz − z, J(αn(zn − z))⟩
= ⟨Tz − z, J(yn − z)⟩ → ⟨Tz − z, J(Tz − z)⟩ = −∥Tz − z∥2.

Hence Tz = z. The proof is complete. ¤
Finally, we need the following lemma, which is essentially Lemma 2 of Liu

[14].

Lemma 2.6. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnβn + γn, ∀n ≥ 0,

where {λn}, {βn} and {γn} satisfying the condition:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞ or, equivalently,
∏∞

n=0(1 − λn) = 0,

(ii) lim supn→∞ βn ≤ 0 or
∑∞

n=1 λnβn < ∞,

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn < ∞.

Then limn→∞ sn = 0.

3. Main results

First, we study the strong convergence of {xt} defined by (1.2).

Theorem 3.1. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of E, and
T : C → E a nonexpansive nonself-mapping satisfying the weak inwardness
condition. Suppose that for f ∈ ΣC and t ∈ (0, 1), the contraction Tt :=
tf + (1 − t)T has a (unique) fixed point xt ∈ C. If the fixed point set F (T ) of
T is nonempty, then {xt} converges strongly as t → 0 to a fixed point of T . If
we define Q : ΣC → F (T ) by

(3.1) Q(f) := lim
t→0

xt, ∀f ∈ ΣC ,

then Q(f) solves the variational inequality

⟨(I − f)Q(f), J(Q(f) − p)⟩ ≤ 0, ∀f ∈ ΣC , p ∈ F (T ).

Proof. Let p ∈ F (T ). First, we prove that {xt} is bounded. In fact, for
p ∈ F (T ), we have

∥xt − p∥ ≤ (1 − t)∥Txt − p∥ + t∥f(xt) − p∥
≤ (1 − t)∥xt − p∥ + t∥f(xt) − p∥

and so
∥xt − p∥ ≤ ∥f(xt) − p∥ ≤ ∥f(xt) − f(p)∥ + ∥f(p) − p∥

≤ k∥xt − p∥ + ∥f(p) − p∥.
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Hence
∥xt − p∥ ≤ 1

1 − k
∥f(p) − p∥

and {xt} is bounded, so are {Txt} and {f(xt)}. As a result, it also follows that

(3.2) ∥xt − Txt∥ = t∥Txt − f(xt)∥ → 0 (as t → 0).

We now show that {xt} converges strongly as t → 0 to a fixed point of T .
To this end, let tn → 0 and xn = xtn . Define ϕ : C → [0,∞) by ϕ(z) =
µn∥xn − z∥2. Since ϕ is continuous and convex, ϕ(z) → ∞ as ∥z∥ → ∞, and
E is reflexive, ϕ attains its infimum over C (cf. [1, p. 79]). Let z ∈ C be such
that

µn∥xn − z∥2 = min
y∈C

µn∥xn − y∥2

and let
M = {u ∈ C : µn∥xn − u∥2 = min

y∈C
µn∥xn − y∥2}.

Then, by Lemma 2.4, we know that M consists of one point, say z. We must
show that this z is a fixed point of T . Since T satisfies the weak inwardness
condition, there are some vn ∈ C and λn ≥ 0 such that

wn; = z + λn(vn − z) → Tz.

If λn ≤ 1 for infinitely many n and these n, then we have wn ∈ C and hence
Tz ∈ C. Since ∥xn − Tz∥ ≤ ∥xn − Txn∥+ ∥xn − z∥, by (3.2) we have ϕ(Tz) ≤
ϕ(z) and Tz = z. So, we may assume λn > 1 for all sufficiently large n. We
then write

vn = rnwn + (1 − rn)z,

where rn = λ−1
n . If {λn} is bounded, then we have v = rTz +(1− r)z for some

cluster point r of {rn} and some weak cluster point v ∈ C of {vn}. By the
convexity of ϕ, we obtain ϕ(v) ≤ rϕ(Tz) + (1− r)ϕ(z) ≤ ϕ(z) and hence v = z
and Tz = z. So assume that λn → ∞. Then we must have vn → z strongly.
By Theorem 2 of [23], ∥ · ∥2 is uniformly convex on any bounded subset of E;
especially, we have a continuous increasing function g = gr : R+ := [0,∞) →
R+, with g(0) = 0, such that

∥λx + (1 − λ)y∥2 ≤ λ∥x∥2 + (1 − λ)∥y∥2 − λ(1 − λ)g(∥x − y∥)
for 0 ≤ λ ≤ 1 and x, y ∈ Br, where Br is the closed ball centered at 0 and with
radius r that is big enough so that Br contains z and {wn}. It follows that

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y) − λ(1 − λ)g(∥x − y∥)
for 0 ≤ λ ≤ 1 and x, y ∈ Br. Noting vn ∈ C, we derive that

ϕ(z) ≤ ϕ(vn) ≤ rnϕ(wn) + (1 − rn)ϕ(z) − rn(1 − rn)g(∥wn − z∥)
and hence (1 − rn)g(∥wn − z∥) ≤ ϕ(wn) − ϕ(z). Taking limit as n → ∞, by
ϕ(Tz) ≤ ϕ(z), we obtain

g(∥Tz − z∥) ≤ ϕ(Tz) − ϕ(z) ≤ 0.
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Therefore, Tz = z, that is, z is a fixed point of T . Moreover, by Lemma 2.3,
we have

(3.3) µn⟨x − z, J(xn − z)⟩ ≤ 0.

On the other hand, since

xt − z = t(f(xt) − z) + (1 − t)(Txt − z),

∥xt − z∥2 = t⟨f(xt) − z, J(xt − z)⟩ + (1 − t)⟨Txt − z, J(xt − z)⟩
≤ t⟨f(xt) − z, J(xt − z)⟩ + (1 − t)∥xt − z∥2,

we have
∥xt − z∥2 ≤ ⟨f(xt) − z, J(xt − z)⟩

= ⟨f(xt) − x, J(xt − z)⟩ + ⟨x − z, J(xt − z)⟩.

Hence by (3.3), for x ∈ C,

µn∥xn − z∥2 ≤ µn⟨f(xn) − x, J(xn − z)⟩ + µn⟨x − z, J(xn − z)⟩
≤ µn⟨f(xn) − x, J(xn − z)⟩
≤ µn∥f(xn) − x∥∥xn − z∥.

In particular,

µn∥xn − z∥2 ≤ µn∥f(xn) − f(z)∥∥xn − z∥ ≤ kµn∥xn − z∥2.

Since k ∈ (0, 1), we have
µn∥xn − z∥2 = 0.

Hence there exists a subsequence, which is still denoted {xn}, such that xn → z.
Now suppose that there is another subsequence {xj} of {xn

t } such that xj →
q. Then q is a fixed point of T by (3.2), that is, q ∈ F (T ). It follows from (3.3)
that

(3.4) ∥q − z∥2 ≤ f(q) − z, J(q − z)⟩, and ∥z − q∥2 ≤ ⟨f(z) − q, J(z − q)⟩.

Adding two inequality in (3.4) yields

2∥z − q∥2 ≤ ∥z − q∥2 + ⟨f(z) − f(q), J(z − q)⟩ ≤ (1 + k)∥z − q∥2.

Since k ∈ (0, 1), this implies that z = q. Hence xt → q as t → 0.
Define Q : ΣC → F (T ) by

Q(f) = lim
t→0

xt.

Since xt = tf(xt) + (1− t)Txt, we have (I − f)xt = − 1−t
t (I − T )xt. Hence for

p ∈ F (T ),

⟨(I − f)xt, J(xt − p)⟩ = −1 − t

t
⟨(I − T )xt − (I − T )p, J(xt − p)⟩ ≤ 0.

Letting t → 0 yields ⟨(I − f)Q(f), J(Q(f)− p)⟩ ≤ 0. This completes the proof.
¤
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Remark 3.1. In Theorem 3.1, if f(x) = u, x ∈ C, is a constant, then

⟨Q(u) − u, J(Q(u) − p)⟩ ≤ 0, ∀u ∈ C, p ∈ F (T ).

Hence by (2.2), Q defined by (3.1) reduces to the sunny nonexpansive retraction
from C to F (T )

Remark 3.2. (1) Theorem 3.1 generalizes the corresponding results of Moudafi
[16] and Xu [26] to the case of nonself-mappings.

(2) Theorem 3.1 improves the corresponding results of Jung and Kim [11],
Xu [24] and Reich [18] to the viscosity method.

(3) To guarantee the existence of a fixed point of the contraction Tt defined
by (1.1), the weak inwardness condition upon the mapping T is used. In fact,
it is well-known (cf. [4]) that if C, a bounded closed convex subset of a Banach
space E, has the FPP and a nonexpansive T : C → E is weakly inward, then
the contraction Tt does have a fixed point for every t ∈ (0, 1). Hence we have
the following corollary.

Corollary 3.1. Let E, C, T be as in Theorem 3.1. Suppose in addition that
C is bounded. For each f ∈ ΣC and t ∈ (0, 1), let xt be a unique element of C
which satisfies

xt = tf(xt) + (1 − t)Txt.

Then {xt} converges strongly as t → 0 to a fixed point of T . If we define
Q : ΣC → F (T ) by

Q(f) := lim
t→0

xt, ∀f ∈ ΣC ,

then Q(f) solves the variational inequality

⟨(I − f)Q(f), J(Q(f) − p)⟩ ≤ 0, ∀f ∈ ΣC , p ∈ F (T ).

Remark 3.3. (1) Corollary 3.1 generalizes Corollary 1 of Xu and Yin [27] to
the viscosity method in a Banach space.

(2) Since Rothe’s boundary condition : T (∂C) ⊂ C implies the weak in-
wardness condition, Corollary 3.1 also improves upon Theorem of Singh and
Waston [19] in the case of f = u a constant.

Next, we denote by Q the sunny and nonexpansive retraction of E onto C.
Now let T : C → E be nonexpansive and f ∈ ΣC . Following Marino and
Trombetta [15], we define the contraction Ut := Uf

t and St := Sf
t from C into

itself by
Utx = tf(x) + (1 − t)QTx, ∀x ∈ C, t ∈ (0, 1).

Then Banach’s contraction principle yields a unique point xt ∈ C (resp. yt ∈ C)
that is fixed by Ut, that is, we have

xt = tf(xt) + (1 − t)QTxt, ∀t ∈ (0, 1).

Theorem 3.2. Let E be a reflexive and strictly convex Banach space with
a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset
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of E, and T : C → E a nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C is a sunny nonexpansive retact of E
with Q as the sunny nonexpansive retraction, and that for each t ∈ (0, 1) and
f ∈ ΣC , xt is a (unique) fixed point of the contraction Ut := tf + (1 − t)QT .
If the fixed point set F (T ) of T is nonempty, then {xt} converges strongly as
t → 0 to a fixed point of T . If we define R : ΣC → F (T ) by

R(f) := lim
t→0

xt, ∀f ∈ ΣC ,

then R(f) solves the variational inequality

⟨(I − f)R(f), J(R(f) − p)⟩ ≤ 0, ∀f ∈ ΣC , p ∈ F (T ).

Proof. If the fixed point set F (T ) of T is nonempty, then {xt} is bounded. In
fact, for p ∈ F (T ), we have

∥xt − p∥ ≤ (1 − t)∥QTxt − QTp∥ + t∥f(xt) − p∥
≤ (1 − t)∥xt − p∥ + t∥f(xt) − p∥.

Hence, as in the proof of Theorem 3.1, ∥xt − p∥ ≤ 1
1−k∥f(p) − p∥ and so {xt}

is bounded.
Now, let tn → 0 and xn = xtn . As in the proof of Theorem 3.1, we define

the same function ϕ : C → [0,∞) by ϕ(z) = µn∥xn − z∥2 and let

M = {x ∈ C : µn∥xn − x∥2 = min
y∈C

µn∥xn − y∥2}.

Then M is invariant under QT . In fact, since

∥xt − QTxt∥ = t∥QTxt − x∥ → 0 as t → 0,

we have, for all x ∈ M ,

ϕ(QTx) = µn∥xn − QTx∥2 = µn∥QTxn − QTx∥2 ≤ µn∥xn − x∥2 = ϕ(x),

and hence QTx ∈ M because QTx ∈ C. Furthermore, M contains a fixed
point of QT . To this end, define

Mo = {v ∈ M : ∥v − w∥ = min
y∈M

∥w − y∥}.

Then, by Lemma 2.1, Mo is a singleton. Denote such a singleton by z. Then
we have

∥QTz − w∥ = ∥QTz − QTw∥ ≤ ∥z − w∥
and hence QTz = z. Applying the method of the proof of Theorem 3.1 to the
nonexpansive mapping QT , we have that {xt} converges strongly as t → 0 to
a fixed point z of QT . By Lemma 2.5, z is a fixed point of T . The remainder
of the proof follows from that in the proof of Theorem 3.1. ¤
Remark 3.4. Theorem 3.2 improves the corresponding results of Jung and
Kim [10], Jung and Kim [11], and Xu and Yin [27] to the viscosity method.
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Now we consider the explicit iterative scheme: for Q the sunny and non-
expansive retraction of E onto C, T : C → E nonexpansive nonself-mapping,
f ∈ ΣC and λn ∈ (0, 1),

(3.5)

{
x0 ∈ C

xn+1 = λnf(xn) + (1 − λn)QTxn ∀n ≥ 0.

Theorem 3.3. Let E be a reflexive and strictly convex Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of
E, and T : C → E a nonexpansive nonself-mapping with F (T ) ̸= ∅ satisfying
the weak inwardness condition. Suppose that C is a sunny nonexpansive retract
of E with Q as the sunny nonexpansive retraction, and that for each t ∈ (0, 1)
and f ∈ ΣC , {xn} is the sequence defined by (3.5). Let {λn} be a sequence in
(0, 1) which satisfies the conditions:

(C1) lim
n→∞

λn = 0; (C2)
∞∑

n=0

λn = ∞;

(C3) |λn+1 − λn| ≤ ◦(λn+1) + σn,
∞∑

n=0

σn < ∞.

Then {xn} converges strongly to R(f) ∈ F (T ), where R(f) which solves the
variational inequality

⟨(I − f)R(f), J(R(f) − p)⟩ ≤ 0, ∀f ∈ ΣC , p ∈ F (T ).

Proof. We proceed with the following steps:
Step 1: ∥xn − z∥ ≤ max{∥x0 − z∥, 1

1−k∥f(z) − z∥} for all n ≥ 0 and all
z ∈ Fix(T ) and so {xn} is bounded.

We use an inductive argument. Indeed, let z ∈ Fix(T ) and d = max{∥x0 −
z∥, 1

1−k∥f(z) − z∥}. Then by the nonexpansivity of T and f ∈ ΣC ,

∥x1 − z∥ ≤ (1 − λ0)∥QTx0 − QTz∥ + λ0∥f(x0) − z∥
≤ (1 − λ0)∥x0 − z∥ + λ0(∥f(x0) − f(z)∥ + ∥f(z) − z∥)
≤ (1 − (1 − k)λ0)∥x0 − z∥ + λ0∥f(z) − z∥
≤ (1 − (1 − k)λ0)d + λ0(1 − k)d = d.

Using an induction, we obtain

∥xn+1 − z∥ ≤ d, ∀n ≥ 0.

Hence, it follows that {xn} is bounded, and so are {QTxn} and {f(xn)}.
Step 2: limn→∞ ∥xn+1 − xn∥ = 0. By Step 1 above, there exists a constant

L > 0 such that for all n ≥ 0, ∥f(xn)∥ + ∥QTxn∥ ≤ L. Since for all n ≥ 0, we
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have
∥xn+1 − xn∥

=∥(1 − λn)(QTxn − QTxn−1)

+ (λn − λn−1)(f(xn−1) − QTxn−1) + λn(f(xn) − f(xn−1))∥
≤ (1 − λn)∥xn − xn−1∥ + L|λn − λn−1| + kλn∥xn − xn−1∥
≤ (1 − (1 − k)λn)∥xn − xn−1∥ + (◦(λn) + σn−1)L.

By taking sn+1 = ∥xn+1 − xn∥, αn = (1 − k)λn, αnβn = ◦(λn)L and γn =
σn−1L, we have

sn+1 ≤ (1 − αn)sn + αnβn + γn,

and, by Lemma 2.6,
lim

n→∞
∥xn+1 − xn∥ = 0.

Step 3: limn →∞ ∥xn+1 − QTxn∥ = 0. Indeed, since

∥xn+1 − QTxn∥ = λn∥QTxn − f(xn)∥ ≤ Lλn

for some L, by (C1), we have limn →∞ ∥xn+1 − QTxn∥ = 0.
Step 4: limn→∞ ∥xn − QTxn∥ = 0. Indeed, by Step 2 and Step 3,

∥xn − QTxn∥ ≤ ∥xn − xn+1∥ + ∥xn+1 − QTxn∥ → 0.

Step 5: lim supn→∞⟨(I−f)R(f), J(R(f)−xn)⟩ ≤ 0, where R(f) = limt→0 xt,
(xt = tf(xt) + (1 − t)QTxt), solves the variational inequality

⟨(I − f)R(f), J(R(f) − p)⟩ ≤ 0. ∀f ∈ ΣC , p ∈ Fix(T ).

Indeed we can write

xt − xn = t(f(xt) − xn) + (1 − t)(QTxt − xn).

Putting an(t) = ∥QTxn − xn∥(2∥xt − xn∥ + ∥QTxn − xn∥) → 0 (n → ∞) and
using Lemma 2.2, we obtain

∥xt − xn∥2 ≤ (1 − t)2∥QTxt − xn∥2 + 2t⟨f(xt) − xn, J(xt − xn)⟩
≤ (1 − t)2(∥QTxt − QTxn∥ + ∥QTxn − xn∥)2

+ 2t⟨f(xt) − xt, J(xt − xn)⟩ + 2t∥xt − xn∥2

≤ (1 − t)2∥xt − xn∥2 + an(t)

+ 2t⟨f(xt) − xt, J(xt − xn)⟩ + 2t∥xt − xn∥2.

The last inequality implies

⟨xt − f(xt), J(xt − xn)⟩ ≤ t

2
+

1
2t

an(t).

It follows that

(3.6) lim sup
n→∞

⟨xt − f(xt), J(xt − xn)⟩ ≤ M
t

2
,

where M > 0 is a constant such that M ≥ ∥xt − xn∥2 for all n ≥ 0 and
t ∈ (0, 1). Taking the lim sup as t → 0 in (3.6) and noting the fact that J is
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uniformly continuous on bounded subsets of E from the strong topology of E
to the weak-star topology of E∗, we have

lim sup
n→∞

⟨(I − f)R(f), J(R(f) − xn)⟩ ≤ 0.

Step 6: limn→∞ ∥xn − R(f)∥ = 0. By using (3.5), we have

xn+1 − R(f) = λn(f(xn) − R(f)) + (1 − λn)(QTxn − R(f)).

Applying Lemma 1, we obtain

∥xn+1 − R(f)∥2

≤ (1 − λn)2∥QTxn − R(f)∥2 + 2λn⟨f(xn) − R(f), J(xn+1 − R(f))⟩
≤ (1 − λn)2∥xn − R(f)∥2 + 2λn⟨f(xn) − f(R(f)), J(xn+1 − R(f))⟩

+ 2λn⟨f(R(f)) − R(f), J(xn+1 − R(f))⟩
≤ (1 − λn)2∥xn − R(f)∥2 + 2kλn∥xn − R(f)∥∥xn+1 − R(f)∥

+ 2λn⟨f(R(f)) − R(f), J(xn+1 − R(f))⟩
≤ (1 − λn)2∥xn − R(f)∥2 + kλn(∥xn − R(f)∥2 + ∥xn+1 − R(f)∥2)

+ 2λn⟨f(R(f)) − R(f), J(xn+1 − R(f))⟩.

It then follows that

(3.7)

∥xn+1 − R(f)∥2 ≤ 1 − (2 − k)λn + λ2
n

1 − kλn
∥xn − R(f)∥2

+
2λn

1 − kλn
⟨f(R(f)) − R(f), J(xn+1 − R(f))⟩

≤ 1 − (2 − k)λn

1 − kλn
∥xn − R(f)∥2 +

λ2
n

1 − kλn
M

+
2λn

1 − kλn
⟨f(R(f)) − R(f), J(xn+1 − R(f))⟩,

where M = supn≥0 ∥xn − R(f)∥2. Put

αn =
2(1 − k)λn

1 − kλn
,

βn =
Mλn

2(1 − k)
+

1
1 − k

⟨f(R(f)) − R(f), J(xn+1 − R(f))⟩.

From (C1), (C2) and Step 5, it follows that αn → 0,
∑∞

n=0 αn = ∞ and

lim sup
n→∞

βn ≤ 0.

Since (3.7) reduces to

∥xn+1 − R(f)∥2 ≤ (1 − αn)∥xn − R(f)∥2 + αnβn,

from Lemma 2.6, we conclude that limn→∞ ∥xn − R(f)∥ = 0. This completes
the proof. ¤
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Remark 3.5. (1) Theorem 3.3 improves Theorem 4.2 of Xu [26] (and Theorem
2.2 of Moudafi [16]) to the case of nonself-mappings.

(2) Condition (C3) on {λn} in Theorem 3.3 is independent of Xu’s condition
[25, 26]:

∞∑
n=0

|λn+1 − λn| < ∞ or lim
n→∞

λn+1

λn
= 1.

For this fact, see [8, 9].
(3) Our results apply to all uniformly convex and uniformly smooth Banach

spaces and in particular, to all Lp spaces, 1 < p < ∞.
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