DOI QR코드

DOI QR Code

SOME NEW ESTIMATES FOR EXPONENTIALLY (ħ, m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS

  • Received : 2019.07.17
  • Accepted : 2019.10.16
  • Published : 2019.12.30

Abstract

In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for the exponentially (ħ, m)-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.

Keywords

Acknowledgement

The authors would like to thank the Rector, COMSATS Institute of Information Technology, Pakistan, for providing excellent research and academic environments. Authors are grateful to the referees for their valuable comments and suggestions.

References

  1. G. Alirezaei and R. Mathar, On exponentially concave functions and their impact in information theory, J. inform. Theory. Appl 9 (5)(2018), 265-274.
  2. M. U. Awan, M. A. Noor, and K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci. 12 (2) (2018), 405-409. https://doi.org/10.18576/amis/120215
  3. M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, and A. G. Khan, Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (4) (2017), 1755-1766. https://doi.org/10.22436/jnsa.010.04.37
  4. A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 28 (1) (1994), 7-12.
  5. S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66. https://doi.org/10.1007/BF02592679
  6. G. Cristescu, M. A. Noor, K. I. Noor, and M. U. Awan, Some inequalities for functions having Orlicz-convexity, Appl. Math. Comput., 273 (2016), 226-236. https://doi.org/10.1016/j.amc.2015.09.068
  7. Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications, Ph.D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India, (2014).
  8. M. R. Delavar and S. S. Dragomir, On $\eta$-convexity, Math. Inequal. Appl., 20 (1)(2017), 203-216.
  9. S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 33 (1) (2002), 55-65. https://doi.org/10.5556/j.tkjm.33.2002.304
  10. S. S. Dragomir and I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babe s-Bolyai Math. 60 (4) (2015), 527-534.
  11. S. S. Dragomir and Gh. Toader, Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai Math., 38 (1) (1993), 21-28.
  12. G. Farid, A. U. Rehman, V. N. Mishra, S. Mehmood, Fractional Integral Inequalities of Gruss Type via Generalized Mittag-Leffler Function, Int. J. Anal. Appl., 17 (4) (2019), 548-558.
  13. J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pures Appl. 58 (1893), 171- 215.
  14. I. Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Stud. Univ. Babe s-Bolyai Math., 60 (3) (2015), 355-366.
  15. A. A. Kilbas and A. A. Koroleva, Integral transform with the extended generalized Mittag-Leffler function, Math. Model. Anal., 11 (2) (2006), 173-186. https://doi.org/10.3846/13926292.2006.9637311
  16. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations ( North-Holland Mathematics Studies), New York, USA, 204 (2006).
  17. M. A. Latif, Estimates of Hermite-Hadamard inequality for twice differentiable harmonically-convex functions with applications, Punjab Univ. J. Math. 50 (1) (2018), 1-13.
  18. L. N. Mishra, Q. U. Ain, G. Farid, A. U. Rehman, k-fractional integral inequalities for (h-m)-convex functions via Caputo k-fractional derivatives, Korean J. Math. 27 (2) (2019), 357-374. https://doi.org/10.11568/KJM.2019.27.2.357
  19. L. N. Mishra,On existence and behavior of solutions to some nonlinear integral equations with applications, Ph.D. Thesis, National Institute of Technology, Silchar 788 010, Assam, India, (2017).
  20. C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4) (2003), 571-579.
  21. D. Nie, S. Rashid, A. O. Akdemir, D. Baleanu and J. -B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics, 727 (7) (2019); doi:10.3390/math7080727.
  22. M. A. Noor, K. I. Noor, and S. Rashid, On exponentially r-convex functions and inequalities, (2019), (in press).
  23. M. A. Noor and K. I. Noor, Strongly exponentially convex functions, U.P.B. Bull. Ser. A Appl. Math. Phys., 81/82 (2019) (in press).
  24. M. A. Noor and K. I. Noor, Some proerties of exponentially preinvex functions, FACTA Univer(NIS) 34 (4) (2019), (in press).
  25. M. A. Noor, K. I. Noor and S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics, 29 (7) (2019); doi:10.3390/math7010029.
  26. M. E. Ozdemir, M. Avci, and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23 (9) (2010), 1065-1070. https://doi.org/10.1016/j.aml.2010.04.037
  27. S. Pal and T. K. L. Wong., On exponentially concave functions and a new information geometry, Annals. Prob, 46 (2) (2018), 1070-1113.
  28. T. P. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  29. G. Rahman, D. Baleanu, M. Al Qurashi, S. D. Purohit, S. Mubeen, and M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (8) (2017), 4244-4253. https://doi.org/10.22436/jnsa.010.08.19
  30. A. Ur. Rehman, G. Farid, V.N. Mishra, Generalized convex function and asso- ciated Petrovic's inequality, Int. J. Anal. Appl. 17 (1) (2019), 122-131.
  31. S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications, Mathematics 807 (7) (2019); doi:10.3390/math7090807.
  32. S. Rashid, A. O. Akdemir, F. Jarad, M. A. Noor, K. I. Noor, Simpson's type integral inequalities for k-fractional integrals and their applications, AIMS. Math. 4 (4) (2019), 1087-1100; doi: 10.3934/math.2019.4.1087.
  33. S. Rashid, M. A. Noor, and K. I. Noor, Fractional exponentially m-convex functions and inequalities, Inter. J. Anal. Appl. 17 (3) (2019), 464-478.
  34. S. Rashid, M.A. Noor and K. I. Noor, Some generalize Riemann-Liouville fractional estimates involving functions having exponentially convexity property, Punjab. Univ. J. Math, 51 (11) (2019), 01-15.
  35. S. Rashid, M. A. Noor, and K. I. Noor, New estimates for exponentially convex functions via conformable fractional operator, Fractal Fract. 19 (3) (2019); doi:10.3390/fractalfract3020019.
  36. S. Rashid, M. A. Noor, and K. I. Noor, Inequalities pertaining fractional approach through exponentially convex functions, Fractal Fract. 37 (3) (2019); doi:10.3390/fractalfract3030037.
  37. S. Rashid, M. A. noor and K. I. Noor, Modified exponential convex functions and inequalities, Open. Access. J. Math. Theor. Phy 2 (2) (2019), 45-51.
  38. S. Rashid, M. A. Noor, K. I. Noor and A. O. Akdemir, Some new generalizations for exponentially s-convex functions and inequalities via fractional operators, Fractal Fract. 24 (3) (2019); doi:10.3390/fractalfract3020024.
  39. S. Rashid, M. A. Noor and K. I. Noor, F. Safdar, Integral inequalities for generalized preinvex functions, Punjab. Univ. J. Math, 51 (10) (2019), 77-91.
  40. T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl. 3 (5) (2012), 1-13. https://doi.org/10.1142/9789814355216_0001
  41. E. Set, A. O. Akdemir, and I. Mumcu, Hermite-Hadamard's inequality and its extensions for conformable fractional integrals of any order ${\alpha}$> 0, Creat. Math. Inf, 27 (2018), 197-206. https://doi.org/10.37193/CMI.2018.02.12
  42. H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (1) (2009), 198-210. https://doi.org/10.1016/j.amc.2009.01.055
  43. Gh. Toader, Some generalizations of the convexity, in: Proceedings of the colloquium on approximation and optimization (Cluj-Napoca, 1985), Univ. Cluj-Napoca, Cluj-Napoca, (1985), 329-338.
  44. M. Tomer, E. Set and M. Z. Sarikaya, Hermite Hadamard type Reimann-Liouville fractional integral inequalities for convex funtions, AIP Conference Proceedings, (2016), Art Id:1726,020035.
  45. R. Vandana, Deepmala, L. N. Mishra, V. N. Mishra, Duality relations for a class of a multiobjective fractional programming problem involving support functions, American J. Operations Research, 8 (2018), 294-311, doi: 10.4236/ajor.2018.84017.
  46. S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326 (1) (2007), 303-311. https://doi.org/10.1016/j.jmaa.2006.02.086

Cited by

  1. Boundedness of Fractional Integral Operators Containing Mittag-Leffler Function via Exponentially s-Convex Functions vol.2020, 2019, https://doi.org/10.1155/2020/3584105