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ON A GENERALIZED E-KKM THEOREM

Won Kyu Kim*

Abstract. In this paper, using the E-convexity, we introduce the
generalized E-KKM map, and next prove the generalized E-KKM
theorem which generalizes the KKM theorem due to Fan [4]. As an
application, a fixed point theorem in E-convex sets is given.

1. Introduction

The concept of convexity and its various generalizations are very im-
portant to quantitative and qualitative studies of nonlinear analysis and
convex analysis. In 1929, Knaster et al. [7] first established the famous
KKM theorem in finite dimensional spaces which is a basic result for
combinatorial mathematics. As we know, the KKM theorem is equiv-
alent to many important theorems such as Sperner’s lemma, Brouwer’s
fixed point theorem, and Fan’s minimax inequality. In 1961, Fan [4]
extended the KKM theorem to infinite dimensional topological vector
spaces and gave applications in several directions. Since then, many
authors have made important contributions to the progress of the KKM
theorem as in [1,2,5,6].

On the other hand, Youness [9] introduced a class of sets and a class
of functions called E-convex sets and E-convex functions by relaxing the
definitions of convex sets and convex functions. This new concept in-
spired a great deal of subsequent researches which have greatly expanded
the role of E-convexity in various branches of mathematical sciences as
we can see in [3,8,10]. However, we can not find any generalization of the
KKM theorem using the E-convexity in the development of the KKM
theory.
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In this paper, using the E-convexity, we first introduce the generalized
E-KKM map which generalizes the classical KKM map in the E-convex
set. Next, we prove a generalized E-KKM theorem which is a general-
ization of the classical KKM Theorem. As an application, a fixed point
theorem in E-convex sets is given.

2. Preliminaries

We begin with some notations and definitions. Let X be a nonempty
subset of a Hausdorff topological vector space Y . We shall denote by 2X

the family of all subsets of X, and for any nonempty subset A of Y , by
coA the convex hull of A in Y . When a multimap T : X → 2Y is given,
we shall denote T−1(y) := {x ∈ X | y ∈ T (x)} for each y ∈ Y . Denote
by [0, 1]n the Cartesian product of n unit intervals [0, 1] × · · · × [0, 1],
and denote the unit simplex in [0, 1]n by ∆n−1, and simply denote
λ = (λ1, . . . , λn) ∈ ∆n−1 with Σn

i=1λi = 1.
In [9], Youness first introduced the following which generalizes the

convex condition:

Definition 2.1. Let X be a nonempty subset of a vector space Y .
A set X is said to be E-convex with respect to a map E : Y → Y if
there is a mapping E : Y → Y such that λE(x) + (1− λ)E(y) ∈ X for
each x, y ∈ X and λ ∈ [0, 1].

Every E-convex set is convex when E : Y → Y is the identity map
on Y . From the definition, we note that if X is E-convex, then

E(X) ⊆ coE(X) ⊆ X

holds. Also, if X1, X2 are E-convex subsets of Y , then it is easy to see
that X1 ∩X2 is E-convex. As we can see Example 2.1 in [9], there is an
E-convex set in R2 but not convex so that the E-convexity is a genuine
generalization of the convex condition.

From now on, we shall assume that X is a nonempty subset of a
Hausdorff topological vector space Y equipped with a given map E :
Y → Y .

Next, we will introduce the generalized E-KKM map which includes
the KKM map and its generalizations as follows:

Definition 2.2. Let X be a nonempty subset of a vector space Y .
A multimap T : X → 2Y is called a generalized E-KKM map on X
if for any finite subset {x1, . . . , xn} ⊆ X, there exists a finite subset
{y1, . . . , yn} ⊆ Y such that
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co
({E(yi1), . . . , E(yik)}) ⊆

k⋃

j=1

T (xij )

for any subset {yi1 , . . . , yik} ⊆ {y1, . . . , yn} (1 ≤ k ≤ n).

If T is a generalized E-KKM map on X, each T (x) is clearly nonempty,
and co

({E(y1), . . . , E(yn)}) ⊆ ⋃n
i=1 T (xi). When E : Y → Y is the iden-

tity map on Y , then the generalized E-KKM map is exactly the same
as a generalized KKM map due to Chang-Zhang in [2].

In Definition 2.2, for each finite subset {x1, . . . , xn} ⊆ X, if we take
yi = xi for each i = 1, . . . , n, then we simply call T an E-KKM map.
When E : Y → Y is the identity map on Y , then the E-KKM map is
exactly the same as the KKM map in [5]. It is clear that an E-KKM
map is a generalized E-KKM map; however any generalized E-KKM
map need not be an E-KKM map in general. Now we shall give a simple
example to illustrate the converse does not hold:

Example 2.3. Let Y = R, X = [0, 2], and E : Y → Y is the identity
map on Y . Let T : X → 2Y be defined by T (x) := [0, 1

5x2 + 1] for

each x ∈ X. Then x /∈ T (x) for x ∈ [95 , 2] so that T is not an E-
KKM nor a KKM map on X. Now we show that T is a generalized
E-KKM map on X. Indeed, for any finite set {x1, . . . , xn} ⊆ X, if
we take any finite set {y1, . . . , yn} ⊆ [0, 1] ⊆ Y , then for any subset
{yi1 , . . . , yik} ⊆ {y1, . . . , yn} (i ≤ k ≤ n), we have co({yi1 , . . . , yik}) ⊆
[0, 1] ⊆ ⋃k

j=1 T (xij ) so that T is a generalized E-KKM map on X.

3. A generalized E-KKM theorem and its application

Now we begin with the following:

Theorem 3.1. Let X be a nonempty subset of a Hausdorff topolog-
ical vector space Y , and T : X → 2Y be a generalized E-KKM map. If
T (x) is finitely closed (i.e., for each finite dimensional subspace L in Y ,
T (x)∩L is closed in the Euclidean topology in L) for each x ∈ X. Then
the family of sets {T (x) | x ∈ X} has the finite intersection property.

Proof. For any finite subset {x1, . . . , xn} ⊆ X, we shall show that⋂n
i=1 T (xi) 6= ∅. Since T is a generalized E-KKM map on X, there exists

a finite subset {y1, . . . , yn} ⊆ Y such that for any subset {yi1 , . . . , yik} ⊆
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{y1, . . . , yn} (i ≤ k ≤ n), we have

co({E(yi1), . . . , E(yik)}) ⊆
k⋃

j=1

T (xij ),

and in particular, co
({E(y1), . . . , E(yn)}) ⊆ ⋃n

i=1 T (xi). Now we con-
sider the (n− 1)-simplex ∆n−1 with the vertices e1 = (1, 0, · · · , 0), e2 =
(0, 1, 0, · · · , 0), · · · , en = (0, 0, · · · , 1); and define a continuous map f :
∆n−1 → Y by

f(Σn
i=1λiei) := Σn

i=1λiE(yi), for each (λ1, . . . , λn) ∈ ∆n−1.

Since f(∆n−1) = co({E(y1), . . . , E(yn)}) is a finite dimensional sub-
set of Y and T (xi) is nonempty finitely closed in Y , we have that
each f−1(T (xi)) is a nonempty closed subset of ∆n−1. Indeed, f(ei) =
E(yi) ∈ T (xi), that is, ei ∈ f−1(T (xi)) so that f−1(T (xi)) is nonempty,
and

f−1(T (xi)) = f−1(T (xi)) ∩∆n−1 = f−1
(
T (xi) ∩ f(∆n−1)

)

is closed in ∆n−1 since f is a continuous map. Therefore, we con-
sider the family of nonempty n closed subsets {Gi := f−1(T (xi)) | i =
1, 2, . . . , n} of ∆n−1, and now we will show

⋂n
i=1 Gi 6= ∅. Since T is a

generalized E-KKM map, for any indices 1 ≤ i1 < i2 < · · · < ik ≤ n,

f(Σk
j=1λijeij ) = Σk

j=1λijE(yij ) ⊆
k⋃

j=1

T (xij )

so that

Σk
j=1λijeij ∈ f−1(

k⋃

j=1

T (xij )) =
k⋃

j=1

f−1(T (xij ))

=
k⋃

j=1

Gij ⊆ ∆n−1.

Therefore, we can apply the KKM theorem [4] to the family of closed
subsets {Gi | 1 ≤ i ≤ n} of ∆n−1 so that we have

⋂n
i=1 Gi 6= ∅. Hence

∅ 6=
n⋂

i=1

Gi =
n⋂

i=1

f−1(T (xi)) = f−1
( n⋂

i=1

T (xi)
)

so that we have
⋂n

i=1 T (xi) 6= ∅. This completes the proof.
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Remark 3.2. In Theorem 3.1, if we replace the finitely closed as-
sumption on T (x) with the finitely open assumption on T (x), then the
same conclusion holds by replacing the KKM theorem with Theorem 1
in [6] in the above proof.

As a consequence of Theorem 3.1, we can obtain the following which
is a generalization of the KKM theorem in E-convex settings:

Theorem 3.3. Let X be a nonempty subset of a Hausdorff topolog-
ical vector space Y , and T : X → 2Y be a generalized E-KKM map. If
T (x) is closed for each x ∈ X, and T (xo) is compact for some xo ∈ X,
then we have ⋂

x∈X

T (x) 6= ∅.

Proof. Since T is a generalized E-KKM map and T (x) is nonempty
finitely closed for each x ∈ X, by Theorem 3.1, the family of sets
{T (x) | x ∈ X} has the finite intersection property so that {T (x) ∩
T (xo) | x ∈ X} has also the finite intersection property. Since T (x) ∩
T (xo) is a compact subset of T (xo) for each x ∈ X, we have

∅ 6=
⋂

x∈X

(
T (x) ∩ T (xo)

)
=

( ⋂

x∈X

T (x)
) ∩ T (xo) =

⋂

x∈X

T (x)

which completes the proof.

The following fixed point theorem, which generalizes the Fan-Browder
fixed point theorem [1,4] in E-convex sets, can be a basic tool in prov-
ing many variational inequalities and intersection theorems in E-convex
settings:

Theorem 3.4. Let X be a nonempty subset of a Hausdorff topolog-
ical vector space Y , and let T : X → 2X be a multimap satisfying the
following:

(1) for each x ∈ X, T (x) is open in X;
(2) for each y ∈ X, T−1(y) is a nonempty E-convex subset of X;
(3) there exists an yo ∈ X such that X \ T (yo) is compact.

Then T has a fixed point x̂ ∈ X, i.e., x̂ ∈ T (x̂).

Proof. In case T (x) = X for some x ∈ X, then we have done. Suppose
that each T (x) is a proper subset of X. Consider the multimap S : X →
2X defined by

S(x) := X \ T (x) for each x ∈ X.
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By the assumption (1), each S(x) is nonempty closed in X, and by the as-
sumption (3), S(yo) is nonempty compact. Note that X =

⋃
x∈X T (E(x)).

In fact, for each y ∈ X, by the assumption (2), choose x ∈ T−1(y); then
y ∈ T (x). Since T−1(y) is E-convex, E(x) ∈ T−1(y) so that y ∈ T (E(x)).
Therefore, we have

X =
⋃

x∈X

T (x) =
⋃

x∈X

T (E(x));

so that we have⋂

x∈X

S(x) =
⋂

x∈X

(
X \ T (x)

)
= X \

⋃

x∈X

T (x) = ∅.

Therefore, by Theorem 3.3, S should not be a (generalized) E-KKM
map on X. Therefore, there exist a finite subset {x1, . . . , xn} ⊆ X and
a point

x̂ = Σn
i=1λiE(xi) ∈ co({E(x1), . . . , E(xn)}) ⊆ X

with (λ1, . . . , λn) ∈ ∆n−1 such that

x̂ = Σn
i=1λiE(xi) /∈

n⋃

i=1

S(xi) =
n⋃

i=1

(
X \ T (xi)

)
= X \

n⋂

i=1

T (xi);

so that x̂ ∈ ⋂n
i=1 T (xi). Therefore, xi ∈ T−1(x̂) for each i = 1, . . . , n.

Since T−1(x̂) is a nonempty E-convex subset of X, we have

{E(x1), . . . , E(xn)} ⊆ E
(
T−1(x̂)

) ⊆ co{E(
T−1(x̂)

)} ⊆ T−1(x̂).

Therefore, we obtain that x̂ = Σn
i=1λiE(xi) ∈ T−1(x̂) so that x̂ ∈ T (x̂)

which completes the proof.
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