• Title/Summary/Keyword: Dry etching

Search Result 408, Processing Time 0.023 seconds

Dry Etching of GaAs in a Planar Inductively Coupled BCl3 Plasma (BCl3 평판형 유도결합 플라즈마를 이용한 GaAs 건식식각)

  • Lim, Wan-tea;Baek, In-kyoo;Jung, Pil-gu;Lee, Je-won;Cho, Guan-Sik;Lee, Joo-In;Cho, Kuk-San;Pearton, S.J.
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.266-270
    • /
    • 2003
  • We studied BCl$_3$ dry etching of GaAs in a planar inductively coupled plasma system. The investigated process parameters were planar ICP source power, chamber pressure, RIE chuck power and gas flow rate. The ICP source power was varied from 0 to 500 W. Chamber pressure, RIE chuck power and gas flow rate were controlled from 5 to 15 mTorr, 0 to 150 W and 10 to 40 sccm, respectively. We found that a process condition at 20 sccm $BCl_3$ 300 W ICP, 100 W RIE and 7.5 mTorr chamber pressure gave an excellent etch result. The etched GaAs feature depicted extremely smooth surface (RMS roughness < 1 nm), vertical sidewall, relatively fast etch rate (> $3000\AA$/min) and good selectivity to a photoresist (> 3 : 1). XPS study indicated a very clean surface of the material after dry etching of GaAs. We also noticed that our planar ICP source was successfully ignited both with and without RIE chuck power, which was generally not the case with a typical cylindrical ICP source, where assistance of RIE chuck power was required for turning on a plasma and maintaining it. It demonstrated that the planar ICP source could be a very versatile tool for advanced dry etching of damage-sensitive compound semiconductors.

The Characteristic Variation of Mask with Plasma Treatment (플라즈마 처리에 의한 마스크 특성 변화)

  • Kim, Jwa-Yeon;Choi, Sang-Su;Kang, Byung-Sun;Min, Dong-Soo;An, Young-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We have studied surface roughness, contamination of impurity, bonding with some gas element, reflectance and zeta potential on masks to be generated or changed during photolithography/dry or wet etching process. Mask surface roughness was not changed after photolithography/dry etching process. But surface roughness was changed on some area under MoSi film of Cr/MoSi/Qz. There was not detected any impurity on mask surface after plasma dry etching process. Reflectance of mask was increased after variable plasma etching treatment, especially when mask was treated with plasma including $O_2$ gas. Blank mask was positively charged when the mask was treated with Cr plasma etching gas($Cl_2:250$ sccm/He:20 $sccm/O_2:29$ seem, source power:100 W/bias power:20 W, 300 sec). But this positive charge was changed to negative charge when the mask was treated with $CF_4$ gas for MoSi plasma etching, resulting better wet cleaning. There was appeared with negative charge on MoSi/Qz mask treated with Cr plasma etching process condition, and this mask was measured with more negative after SC-1 wet cleaning process, resulting better wet cleaning. This mask was charged with positive after treatment with $O_2$ plasma again, resulting bad wet cleaning condition.

Dry Etching of Ru Electrodes using O2/Cl2 Inductively Coupled Plasmas

  • Kim, Hyoun Woo
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.238-242
    • /
    • 2003
  • The characteristics of Ru etching using $O_2/Cl_2$ plasmas were investigated by employing inductively coupled plasma (ICP) etcher. The changes of Ru etch rate, Ru to $SiO_2$ etch selectivity and Ru electrode etching slope with the gas flow ratio, bias power, total gas flow rate, and source power were scrutinized. A high etching slope (${\sim}86^{\circ}$) and a smooth surface after etching was attained using $O_2/Cl_2$ inductively coupled plasma.

Optimization of Etching Profile in Deep-Reactive-Ion Etching for MEMS Processes of Sensors

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jae Hong
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • This paper reports the results of a study on the optimization of the etching profile, which is an important factor in deep-reactive-ion etching (DRIE), i.e., dry etching. Dry etching is the key processing step necessary for the development of the Internet of Things (IoT) and various microelectromechanical sensors (MEMS). Large-area etching (open area > 20%) under a high-frequency (HF) condition with nonoptimized processing parameters results in damage to the etched sidewall. Therefore, in this study, optimization was performed under a low-frequency (LF) condition. The HF method, which is typically used for through-silicon via (TSV) technology, applies a high etch rate and cannot be easily adapted to processes sensitive to sidewall damage. The optimal etching profile was determined by controlling various parameters for the DRIE of a large Si wafer area (open area > 20%). The optimal processing condition was derived after establishing the correlations of etch rate, uniformity, and sidewall damage on a 6-in Si wafer to the parameters of coil power, run pressure, platen power for passivation etching, and $SF_6$ gas flow rate. The processing-parameter-dependent results of the experiments performed for optimization of the etching profile in terms of etch rate, uniformity, and sidewall damage in the case of large Si area etching can be summarized as follows. When LF is applied, the platen power, coil power, and $SF_6$ should be low, whereas the run pressure has little effect on the etching performance. Under the optimal LF condition of 380 Hz, the platen power, coil power, and $SF_6$ were set at 115W, 3500W, and 700 sccm, respectively. In addition, the aforementioned standard recipe was applied as follows: run pressure of 4 Pa, $C_4F_8$ content of 400 sccm, and a gas exchange interval of $SF_6/C_4F_8=2s/3s$.

A Dry-patterned Cu(Mg) Alloy Film as a Gate Electrode in a Thin Film Transistor Liquid Crystal Displays (TFT- LCDs) (TFT-LCDs 게이트 전극에 적용한 Cu(Mg) 합금 박막의 건식식각)

  • Yang Heejung;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The annealing of a Cu(4.5at.% Mg)/$SiO_2$/Si structure in ambient $O_2$, at 10 mTorr, and $300-500^{\circ}C$, allows for the outdiffusion of the Mg to the Cu surface, forming a thin MgO (15 nm) layer on the surface. The surface MgO layer was patterned, and successfully served as a hard mask, for the subsequent dry etching of the underlying Mg-depleted Cu films using an $O_2$ plasma and hexafluoroacetylacetone [H(hfac)] chemistry. The resultant MgO/Cu structure, with a taper slope of about $30^{\circ}C$ shows the feasibility of the dry etching of Cu(Mg) alloy films using a surface MgO mask scheme. A dry-etched Cu(4.5at.% Mg) gate a-Si:H TFT has a field effect mobility of 0.86 $\textrm{cm}^2$/Vs, a subthreshold swing of 1.08 V/dec, and a threshold voltage of 5.7 V. A novel process for the dry etching of Cu(Mg) alloy films, which eliminates the use of a hard mask, such as Ti, and results in a reduction in the process steps is reported for the first time in this work.

Laser Direct Ory Etching for $Al_{0.3}Ga_{0.7}As/GaAs$ Multi-layer Structures ($Al_{0.3}Ga_{0.7}As/GaAs$ 다층구조의 레이저 직접 건식에칭)

  • Park, Se-Ki;Lee, Cheon;Kim, Seong-Il;Kim, Eun-Kyu;Min, Suk-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1980-1981
    • /
    • 1996
  • Laser direct dry etching is a new technique in semiconductor processing which has a lot of advantage, including decrease of etching-induced damage, maskless, photoresistiess, and high selectivity. This study presents characteristics of a laser direct dry etching for $Al_{0.3}Ga_{0.7}As/GaAs$ multi-layer structures for the first time. In this study, we were able to obtain the unusual aching profiles. The cross sectional analysis of etched groove was peformed for reaction characteristics and their applications.

  • PDF

A study on Silicon dry Etching for Solar Cell Fabrication Using Hollow Cathode Plasma System (태양전지 제작을 위한 Hollow Cathode Plasma System의 실리콘 건식식각에 관한 연구)

  • ;Suresh Kumar Dhungel
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.62-66
    • /
    • 2004
  • This paper investigated the characteristics of a newly developed high density hollow cathode plasma (HCP) system and its application for the etching of silicon wafers. We used SF$_{6}$ and $O_2$ gases in the HCP dry etch process. Silicon etch rate of $0.5\mu\textrm{m}$/min was achieved with $SF_6$$O_2$plasma conditions having a total gas pressure of 50mTorr, and RF power of 100 W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. The results of this experiment can be used for various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications.s.

An Investigation of Selective Etching of GaAs to Al\ulcornerGa\ulcornerAs Using BCI$_3$SF\ulcorner Gas Mixture in ECR Plasma (ECR 플라즈마에서 $BCI_3/SF_6$ 혼합 가스를 이용한 $Al_{0.25}Ga_{0.75}As$에 대한 GaAs의 선택적 식각에 대한 연구)

  • 이철욱;이동율;손정식;배인호;박성배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.447-452
    • /
    • 1998
  • The selective dry etching of GaAs to Al\ulcornerGa\ulcornerAs using $BCI_3/SF_6$ gas mixture in electron cyclotron resonance(ECR) plasma is investigated. A selectivity of GaAs to AlGaAs of more than 100 and maximum etch rate of GaAs are obtained at a gas ratio $SF_6/BCI_3+SF_6$ of 25%. We verified the formation of $AlF_3$ on $Al_{0.25}Ga_{0.75}As$from the Auger spectra which enhanced the etch selectivity. In order to investigate surface damage of AlGaAs caused by ECR plasma, we performed a low temperature photoluminescence(PL) measurement as a function of RF power. As the RF power. As the RF power increases, the PL intensity decreases monotonically from 50 to 100 Wand then repidly decreases until 250 W. This behavior is due to surface damage by plasma treatment. This dry etching technique using $BCI_3/SF_6$ gas mixture in ECR plasma is suitable for gate recess formation on the GaAs based pseudomorphic high electron mobility transistor(PHEMT)

  • PDF

Development of apparatus for Single-sided Wet Etching and its applications in Corrugated Membrane Fabrication

  • Kim, Junsoo;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-14
    • /
    • 2021
  • Wet etching is more economical than dry etching and provides a uniform etching depth regardless of wafer sizes. Typically, potassium hydroxide (KOH) and tetra-methyl-ammonium hydroxide (TMAH) solutions are widely used for the wet etching of silicon. However, there is a limit to the wet etching process when a material deposited on an unetched surface reacts with an etching solution. To solve this problem, in this study, an apparatus was designed and manufactured to physically block the inflow of etchants on the surface using a rubber O-ring. The proposed apparatus includes a heater and a temperature controller to maintain a constant temperature during etching, and the hydrostatic pressure of the etchant is considered for the thin film structure. A corrugation membrane with a diameter of 800 ㎛, thickness of 600 nm, and corrugation depth of 3 ㎛ with two corrugations was successfully fabricated using the prepared device.