DOI QR코드

DOI QR Code

Dry Etching of GaAs in a Planar Inductively Coupled BCl3 Plasma

BCl3 평판형 유도결합 플라즈마를 이용한 GaAs 건식식각

  • Lim, Wan-tea (School of Nano Engineerings, Inje University/ Institute of Nano-Technology Applications) ;
  • Baek, In-kyoo (School of Nano Engineerings, Inje University/ Institute of Nano-Technology Applications) ;
  • Jung, Pil-gu (School of Nano Engineerings, Inje University/ Institute of Nano-Technology Applications) ;
  • Lee, Je-won (School of Nano Engineerings, Inje University/ Institute of Nano-Technology Applications) ;
  • Cho, Guan-Sik (School of Nano Engineerings, Inje University/ Institute of Nano-Technology Applications) ;
  • Lee, Joo-In (Nano-Surface Group, Korea Research Institute of Standards and Science) ;
  • Cho, Kuk-San (Cliotek, Inc.) ;
  • Pearton, S.J. (Department of Materials and Eng., University of Florida)
  • 임완태 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 백인규 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 정필구 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 이제원 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 조관식 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 이주인 (한국표준과학 연구소 나노표면 그룹) ;
  • 조국산 (㈜클라이오텍) ;
  • Published : 2003.04.01

Abstract

We studied BCl$_3$ dry etching of GaAs in a planar inductively coupled plasma system. The investigated process parameters were planar ICP source power, chamber pressure, RIE chuck power and gas flow rate. The ICP source power was varied from 0 to 500 W. Chamber pressure, RIE chuck power and gas flow rate were controlled from 5 to 15 mTorr, 0 to 150 W and 10 to 40 sccm, respectively. We found that a process condition at 20 sccm $BCl_3$ 300 W ICP, 100 W RIE and 7.5 mTorr chamber pressure gave an excellent etch result. The etched GaAs feature depicted extremely smooth surface (RMS roughness < 1 nm), vertical sidewall, relatively fast etch rate (> $3000\AA$/min) and good selectivity to a photoresist (> 3 : 1). XPS study indicated a very clean surface of the material after dry etching of GaAs. We also noticed that our planar ICP source was successfully ignited both with and without RIE chuck power, which was generally not the case with a typical cylindrical ICP source, where assistance of RIE chuck power was required for turning on a plasma and maintaining it. It demonstrated that the planar ICP source could be a very versatile tool for advanced dry etching of damage-sensitive compound semiconductors.

Keywords

References

  1. S. J. Pearton, J. W. Lee, E. S. Lambers, J. R. Mileham, C. R. Abernathy, W. S. Hobson, F. Ren and R. J. Shul, J.Vac, Sci. Technol., B14, 118 (1996)
  2. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abemathy, S. J. Pearton, W. S. Hobson and F. Ren, J. Electrochem. Soc., 143, 2010 (1996) https://doi.org/10.1149/1.1836940
  3. R. J. Shul, G. B. McClellan, R. D. Rriggs, D. J. Rieger, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine and C.Barratt, J. Vac. Sci. Technol., A15, 633 (1997) https://doi.org/10.1116/1.580696
  4. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson and F. Ren, J. Electronic Materials, 26, 429 (1997) https://doi.org/10.1007/s11664-997-0114-8
  5. J. W. Lee, E. S. Lambers, C. R. Abernathy, S. J. Peartion, R. J. Shul, F. Ren, W. S. Hobson and C. Constantine, Solid State Electronics, 42, (1998)
  6. T. Maeda, J. W. Lee, R. J. Shul, J. Han, J. Hong, E. S. Lambers, S. J. Pearton, C. R. Abernathy and W.S.Hobson, Applied Surface Science, 143, 174 (1999) https://doi.org/10.1016/S0169-4332(98)00594-7
  7. J. W. Lee, J. F. Donohue, K. D. Mackenzie, R. Westerman, D. Johnson and S. J. Pearton, Solid-State Electronics, 43, 1769 (1999) https://doi.org/10.1016/S0038-1101(99)00129-X
  8. B. H. O, J. S. Jeong, S. G. Park,, Surface and Coating Technology,, 120-121 (1999)
  9. H. J. Lee, J. H. Kim, K. W. Whang, J. H. Joo and J. Vac, Sci. Technol. A14 (3), (1996)
  10. Y. J. Sung, H. S. Kim, Y. H. Lee, J. W. Lee, S. H. Chae, Y. J. Park and G. Y. Yeom, Mater. Sci. Eng., B82, 50 (2001) https://doi.org/10.1016/S0921-5107(00)00716-9
  11. M. A. Lieberman and A. J. Litchenberg, Principles of Plasma Discharges and materials Processing, John Willy & Sons Inc. (1994)
  12. F. Ren, R. F. Kopf, J. M. Kuo, J. R. Lothian, J. W. Lee, S. J. Pearton, R. J. Shul, C. Constantine and D.Johnson, Solid State Electronics, 42, 749 (1998) https://doi.org/10.1016/S0038-1101(97)00292-X
  13. J. W. Lee, K. D. Mackenzie, D. Johnson, R. J. Shul, S. J. Pearton, C. R. Abernathy and F. Ren, Solid State Electronics, 42, 1027 (1998) https://doi.org/10.1016/S0038-1101(98)80025-7
  14. F. Ren, J. W. Lee, C. R. Abernathy, S. J. Pearton, C. Constantine, C. Barratt and R. J. Shul, J. Vac. Sci. Technol., B15, 983 (1997) https://doi.org/10.1116/1.589518
  15. K. N. Lee, J. W. Lee, J. Hong, C. R. Abernathy, S. J. Pearton and W. S. Hobson, J. of Electronic Materials, 26, 1279 (1997) https://doi.org/10.1007/s11664-997-0070-3
  16. J. W. Lee, C. R. Abernathy, S. J. Pearton, F. Ren, C. Constantine and C. Barratt, Solid State Electronics, 42, 733 (1998) https://doi.org/10.1016/S0038-1101(97)00247-5