• Title/Summary/Keyword: Drift region

Search Result 205, Processing Time 0.018 seconds

Low Specific On-resistance SOI LDMOS Device with P+P-top Layer in the Drift Region

  • Yao, Jia-Fei;Guo, Yu-Feng;Xu, Guang-Ming;Hua, Ting-Ting;Lin, Hong;Xiao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.673-681
    • /
    • 2014
  • In this paper, a novel low specific on-resistance SOI LDMOS Device with P+P-top layer in the drift region is proposed and investigated using a two dimensional device simulator, MEDICI. The structure is characterized by a heavily-doped $P^+$ region which is connected to the P-top layer in the drift region. The $P^+$ region can modulates the surface electric field profile, increases the drift doping concentration and reduces the sensitivity of the breakdown voltage on the geometry parameters. Compared to the conventional D-RESURF device, a 25.8% decrease in specific on-resistance and a 48.2% increase in figure of merit can be obtained in the novel device. Furthermore, the novel $P^+P$-top device also present cost efficiency due to the fact that the $P^+$ region can be fabricated together with the P-type body contact region without any additional mask.

The temporal variability of the longitudinal plasma density structure in the low-latitude F -region

  • Oh, S.J.;Kil, H.;Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.30.4-31
    • /
    • 2008
  • Formation of longitudinally wave-like plasma density structure in the low-latitude F region is now a well-known phenomenon from the extensive studies in recent years. Observations of plasma density from multiple satellites have shown that the locations of the crests of the plasma density that are seen to be stationary during daytime are shifted after sunset. This phenomenon has been understood to be caused by eastward drift of the ionosphere at night. However, the eastward drift velocity of the ionosphere after sunset is not sufficiently large enough to explain the day-night difference in the longitudinal density structure. The just after sunset and the nighttime ionospheric morphologymay be affected by this drift after sunset. In this study, we will investigate the temporal variation of the phase of the longitudinal density structure and vertical plasma drift by analyzing the ROCSAT-1, TIMED/GUVI, and DMSP data and verify the role of the vertical drift after sunset in the change of the phase of the longitudinal density structure.

  • PDF

The fabrication process and optimum design of RESURF EDMOSFETs for smart power IC applications (Smart power IC용 RESURF EDMOSFETs의 제조공정과 최적설계)

  • 정훈호;권오경
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.176-184
    • /
    • 1996
  • To overcome the drawbacks of conventional LDMOSFETs, we propose RESURF EDMOSFETs which can be adapted in varous circuit applications, be driven without charge pumping circuity and thowe threshold voltage can be adjusted. The devices have the diffused drift region formed by a high tmperature process before the gate oxidaton. After the polysilicon gate electrode formation, a fraction of the drift region around the gate edge is opened for supplemental self-aligned ion implantation to obtain self-aligned drift region. This leads to a shorter gate length and desirable drift region junction contour under the gate edge for minimum specific-on-resistance. In additon, a and maximize the breakdown voltage. Also, by biasing the metal field plate, we can reduce the specific-on-resistance further. The devices are optimized by using the TSUPREM-4 process simulator and the MEDICI device simulator. The optimized devices have the breakdwon voltage and the specific-on-resistance of 101.5V and 1.14m${\Omega}{\cdot}cm^{2}$, respectively for n-channel RESURF EDMOSFET, and 98V and 2.75m.ohm..cm$^{2}$ respectively for p-channel RESURF EDMOSFET. To check the validity of the simulations, we fabricated n-channel EDMOSFETs and confirmed the measured breakdown voltage of 97V and the specific-on-resistance of 1.28m${\Omega}{\cdot}cm^{2}$. These results are superior to those of any other reported power devices for smart power IC applications.

  • PDF

A New SOI LDMOSFET Structure with a Trench in the Drift Region for a PDP Scan Driver IC

  • Son, Won-So;Kim, Sang-Gi;Sohn, Young-Ho;Choi, Sie-Young
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • To improve the characteristics of breakdown voltage and specific on-resistance, we propose a new structure for a LDMOSFET for a PDP scan driver IC based on silicon-on-insulator with a trench under the gate in the drift region. The trench reduces the electric field at the silicon surface under the gate edge in the drift region when the concentration of the drift region is high, and thereby increases the breakdown voltage and reduces the specific on-resistance. The breakdown voltage and the specific on-resistance of the fabricated device is 352 V and $18.8 m{\Omega}{\cdot}cm^2$ with a threshold voltage of 1.0 V. The breakdown voltage of the device in the on-state is over 200 V and the saturation current at $V_{gs}=5V$ and $V_{ds}$=20V is 16 mA with a gate width of $150{\mu}m$.

  • PDF

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

Extended Trench Gate Superjunction Lateral Power MOSFET for Ultra-Low Specific on-Resistance and High Breakdown Voltage

  • Cho, Doohyung;Kim, Kwangsoo
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.829-834
    • /
    • 2014
  • In this paper, a lateral power metal-oxide-semiconductor field-effect transistor with ultra-low specific on-resistance is proposed to be applied to a high-voltage (up to 200 V) integrated chip. The proposed structure has two characteristics. Firstly, a high level of drift doping concentration can be kept because a tilt-implanted p-drift layer assists in the full depletion of the n-drift region. Secondly, charge imbalance is avoided by an extended trench gate, which suppresses the trench corner effect occurring in the n-drift region and helps achieve a high breakdown voltage (BV). Compared to a conventional trench gate, the simulation result shows a 37.5% decrease in $R_{on.sp}$ and a 16% improvement in BV.

Transit Time Diodes Using Velocity Overshoot Effects for Submillimeter-Wave Frequency Range Operation (속도 오버슈트 효과를 이용하여 서브밀리미터파 주파수 영역에서 동작하는 주행 시간 다이오드)

  • 송인채
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.9-15
    • /
    • 2002
  • We propose a new transit time device to extend the operating frequency to submillimeter-wave(extreme infrared) ranges by utilizing velocity overshoot effects in the drift region. We name it a velocity overshoot transit time (OVTT) diode. This device adopts fast heterostructure tunneling as injection mechanism and a short drift region to optimize the velocity overshoot effects. To enhance dc-to-RF conversion efficiencym the drift region is designed with a bandgap grading method. Simulation results demonstrate that a VOTT diode can be operated at THz ranges.

Electrical Characteristics of LOMOST under Various Overlap Lengths between Gate and Drift Region (게이트와 드리프트 영역 오버랩 길이에 따른 LDMOST 전력 소자의 전기적 특성)

  • Ha, Jong-Bong;Na, Kee-Yeol;Cho, Kyoung-Rok;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.667-674
    • /
    • 2005
  • In this paper the gate overlap length of the LDMOST is optimized for obtaining longer device lifetime. The LDMOSI device with drift region is fabricated using the $0.25\;{\mu}m$ CMOS Process. The gate overlap lengths on drift region are $0.1\;{\mu}m,\;0.4\;{\mu}m\;0.8\;{\mu}m\;and\;1.1\;{\mu}m$, respectively. The breakdown voltages, on-resistances and hot-carrier degradations of the fabricated LDMOST devices are characterized. The LDMOST device with gate overlap length of $0.4\;{\mu}m$ showed the longest on-resistance lifetime, 0.02 years and breakdown voltage of 22 V and on-resistance of $23\;m\Omega{\cdot}mm^2$.

On the Breakdown Voltage and Optimum Drift Region Length of Silicon-On-Insulator PN Diodes (SOI PN 다이오드의 항복전압과 최적 수평길이에 관한 연구)

  • 한승엽;신진철;최연익;정상구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.100-105
    • /
    • 1994
  • Analytical expressions for the breakdown voltage and the optimum drift region length (L$_{dr}$) of SOI (Silicon-On-Insulator) pn diodes are derived in terms of the doping concentration and the thickness of the n- drift region and the buried oxide thickness. The optimum L$_{dr}$ is obtained from the condition that the breakdown voltage of the vertical electric field of n+n- junction equals to the of the lateral electric field of n+n-p+ junction. Analytical results agree reasonably with the numerical simulations using PISCESII.

  • PDF