Transit Time Diodes Using Velocity Overshoot Effects for Submillimeter-Wave Frequency Range Operation

속도 오버슈트 효과를 이용하여 서브밀리미터파 주파수 영역에서 동작하는 주행 시간 다이오드

  • 송인채 (숭실대학교 정보통신전자공학부)
  • Published : 2002.10.01

Abstract

We propose a new transit time device to extend the operating frequency to submillimeter-wave(extreme infrared) ranges by utilizing velocity overshoot effects in the drift region. We name it a velocity overshoot transit time (OVTT) diode. This device adopts fast heterostructure tunneling as injection mechanism and a short drift region to optimize the velocity overshoot effects. To enhance dc-to-RF conversion efficiencym the drift region is designed with a bandgap grading method. Simulation results demonstrate that a VOTT diode can be operated at THz ranges.

드리프트 영역에서의 속도 오버슈트 효과를 이용하여 서브밀리미터파 주파수 영역에서 동작하는 새로운 주행 시간 소자를 제안한다. 이 소자를 속도 오버슈트 주행 시간(VOTT) 다이오드라 명명한다. 이 소자는 캐리어 주입 메커니즘으로 빠르게 이루어지는 이종구조 터널링을 이용하며, 속도 오버슈트 효과를 최적화하기 위하여 짧은 드리프트 영역을 갖는다. 변환효율을 증대시키기 위하여 에너지 대역 간극을 경사시키는 방법으로 드리프트영역을 설계한다. 모의실험결과에 따르면 이 소자는 THz 영역에서 동작하리라 기대된다.

Keywords

References

  1. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981
  2. M. E. Eta and G. I. Haddad, 'High frequency limitations of IMPATT, MITTAT, and TUNNETT mode devices,' IEEE Trans. Microwave Theory and Tech., vol. MTT-27, pp. 442-449, May 1979
  3. D. H. Chow and T. C. McGill, 'Observation of negative differential resistance from a single barrier heterostrunture,' Appl. Phys. Lett., Vol. 52, pp. 54-56, Jan. 1988 https://doi.org/10.1063/1.99316
  4. R. Bersford, L. F. Luo, and W. I. Wang, 'Resonant tuneling through X-valley states in GaAs/AIAS/GaAs single barrier heterostructures,' Appl. Phys. Lett. Vol. 55, pp. 1555-1557, Oct. 1989 https://doi.org/10.1063/1.102242
  5. M. Reddy, S. C. Martin, A. C, Molnar, R. E. Muller, R. P. Smith, P. H. Siegel, M. J. Mondry, M. J. Rodwell, H. Kroemer, and S. J. Allen, Jr., 'Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz,' IEEE Electron Device Lett, Vol. 18, pp. 218-221, May 1997 https://doi.org/10.1109/55.568771
  6. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, 'Resonant tunneling through quantum wells at frequencies up to 2.5 THz,' Appl. Phys. Lett., Vol. 43, pp. 588-590, Sep. 1983 https://doi.org/10.1063/1.94434
  7. V. P. Kesan, D. P. Neikirk, B. G. Streetman, and P. A. Blakey, 'A new transit time device using quantum-well injection,' IEEE Electron Device Lett., Vol. EDL-8, pp. 129-131, Apr. 1987
  8. I. Song and D. S. Pan, 'Analysis and simulation of the quantum well injection transit time diode,' IEEE Trans. Electron Devices, vol. ED-35, pp. 2315-2322, Dec. 1988 https://doi.org/10.1109/16.8807
  9. P.A. Blakey, J. R. East, M. E. Eta, and G. I. Hadded, 'Implications of velocity overshoot in heterojunction transit-time diodes,' Electron. Lett., Vol. 19, pp. 510-512, Jul. 1983 https://doi.org/10.1049/el:19830347
  10. T. H. Glisson, C. K. Williams, J. R. Hauser, and M. A. Littlejohn, 'Transient respones of electron transport in GaAs using the Monte Carlo method', in VLSI Electronics: Microstructure Science, Vol. 4, N. G. Einspruch, Ed. New York: Acadmic, 1982, pp. 99-145
  11. J. Y. Tang and K. Hess, 'Investigation of transient electronic,' transport in GaAs following high energy injection,' IEEE Trans. Electron Devices, Vol. ED-29, pp. 1906-1911, Dec, 1982
  12. I. Song, 'A Proposed effciency enhancement design for the quantum well injection transit time dicode,' KITE Journal of Electronics Engineering, Vol. 5, No. 2, pp. 19-24, Dec. 1994
  13. S. Wang, Fundamentals of Semiconductor Theroy and Device Physics, Englewood Cliffs: Prentice Hall, 1989
  14. I. Song and D. S. Pan, 'A generalized analytical model for the quantum well njection transit time dicode,' IEE Trans Electron Deviecs, Vol.ED-38, pp. 14-22, Jan. 1991
  15. F. Capasso, S. Sen, A. C. Gossard, R. A. Spah, 'Observation of resonant tuneling through a compositionally graded parabolic quantum well,' in IEDM Tech. dig., 66-69, Dec. 1987