• Title/Summary/Keyword: Dirac

Search Result 137, Processing Time 0.027 seconds

RIQUIER AND DIRICHLET BOUNDARY VALUE PROBLEMS FOR SLICE DIRAC OPERATORS

  • Yuan, Hongfen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.149-163
    • /
    • 2018
  • In recent years, the study of slice Dirac operators has attracted more and more attention in the literature. In this paper, Almansitype decompositions for null solutions to the iterated slice Dirac operator and the generalized slice Dirac operator are obtained without a star-like domain centered at the origin. As applications, we investigate Riquier type problems and Dirichlet type problems in the theory of slice monogenic functions.

A NEW QUARTERNIONIC DIRAC OPERATOR ON SYMPLECTIC SUBMANIFOLD OF A PRODUCT SYMPLECTIC MANIFOLD

  • Rashmirekha Patra;Nihar Ranjan Satapathy
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.83-95
    • /
    • 2024
  • The Quaternionic Dirac operator proves instrumental in tackling various challenges within spectral geometry processing and shape analysis. This work involves the introduction of the quaternionic Dirac operator on a symplectic submanifold of an exact symplectic product manifold. The self adjointness of the symplectic quaternionic Dirac operator is observed. This operator is verified for spin ${\frac{1}{2}}$ particles. It factorizes the Hodge Laplace operator on the symplectic submanifold of an exact symplectic product manifold. For achieving this a new complex structure and an almost quaternionic structure are formulated on this exact symplectic product manifold.

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero (균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정)

  • Park, Honghwi;Choi, Muhan;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

A NOTE ON GENERALIZED DIRAC EIGENVALUES FOR SPLIT HOLONOMY AND TORSION

  • Agricola, Ilka;Kim, Hwajeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1579-1589
    • /
    • 2014
  • We study the Dirac spectrum on compact Riemannian spin manifolds M equipped with a metric connection ${\nabla}$ with skew torsion $T{\in}{\Lambda}^3M$ in the situation where the tangent bundle splits under the holonomy of ${\nabla}$ and the torsion of ${\nabla}$ is of 'split' type. We prove an optimal lower bound for the first eigenvalue of the Dirac operator with torsion that generalizes Friedrich's classical Riemannian estimate.

The discretization method of Poisson equation by considering Fermi-Dirac distribution (Fermi-Dirac 분포를 고려한 Poisson 방정식의 이산화 방법)

  • 윤석성;이은구;김철성
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.907-910
    • /
    • 1999
  • 본 논문에서는 고 농도로 불순물이 주입된 영역에서 전자 및 정공 농도를 정교하게 구현하기 위해 Fermi-Dirac 분포함수를 고려한 포아송 방정식의 이산화 방법을 제안하였다. Fermi-Dirac 분포를 근사시키기 위해서 Least-Squares 및 점근선 근사법을 사용하였으며 Galerkin 방법을 근간으로 한 유한 요소법을 이용하여 포아송 방정식을 이산화하였다. 구현한 모델을 검증하기 위해 전력 BJT 시료를 제작하여 자체 개발된 소자 시뮬레이터인 BANDIS를 이용하여 모의 실험을 수행한 결과, 상업용 2차원 소자 시뮬레이터인 MEDICI에 비해 최대 4%이내의 상대 오차를 보였다.

  • PDF

LOCAL WELL-POSEDNESS OF DIRAC EQUATIONS WITH NONLINEARITY DERIVED FROM HONEYCOMB STRUCTURE IN 2 DIMENSIONS

  • Lee, Kiyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1445-1461
    • /
    • 2021
  • The aim of this paper is to show the local well-posedness of 2 dimensional Dirac equations with power type and Hartree type nonlin-earity derived from honeycomb structure in Hs for s > $\frac{7}{8}$ and s > $\frac{3}{8}$, respectively. We also provide the smoothness failure of flows of Dirac equations.

THE FIRST POSITIVE AND NEGATIVE DIRAC EIGENVALUES ON SASAKIAN MANIFOLDS

  • Eui Chul Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.999-1021
    • /
    • 2023
  • Using the results in the paper [12], we give an estimate for the first positive and negative Dirac eigenvalue on a 7-dimensional Sasakian spin manifold. The limiting case of this estimate can be attained if the manifold under consideration admits a Sasakian Killing spinor. By imposing the eta-Einstein condition on Sasakian manifolds of higher dimensions 2m + 1 ≥ 9, we derive some new Dirac eigenvalue inequalities that improve the recent results in [12, 13].