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LOCAL WELL-POSEDNESS OF DIRAC EQUATIONS WITH

NONLINEARITY DERIVED FROM HONEYCOMB

STRUCTURE IN 2 DIMENSIONS

Kiyeon Lee

Abstract. The aim of this paper is to show the local well-posedness of
2 dimensional Dirac equations with power type and Hartree type nonlin-

earity derived from honeycomb structure in Hs for s > 7
8

and s > 3
8

,

respectively. We also provide the smoothness failure of flows of Dirac
equations.

1. Introduction

In this paper we consider following two Cauchy problems for massless hon-
eycomb lattice power type Dirac equations (` = 1) and Hartree type Dirac
equations (` = 2): {

(∂t + α ·D)ψ = −iκN`(ψ,ψ)ψ,
ψ(0) = ψ0,

(1.1)

where ψ : R1+2 → C2 is the spinor field represented by a column vector, κ is
constant, D = −i∇, and α = (P#α

1, P#α
2) are the Dirac matrices defined by

α1 =

(
0 1
1 0

)
, α2 =

(
0 −i
i 0

)
,

with P# =
(
η# 0
0 η#

)
for honeycomb lattice constant η# 6= 0 arising from non-

linear Schrödinger equations (NLS) with honeycomb lattice potentials (see the
Section II in [1]). The nonlinearities N` are defined by

N1(ψ1, ψ2) =

(
b1ψ11ψ21 + 2b2ψ12ψ22 0

0 b1ψ12ψ22 + 2b2ψ11ψ21

)
,

N2(ψ1, ψ2) =
(
|x|−1 ∗ (ψ†1ψ2)

)
,

Received December 14, 2020; Revised April 26, 2021; Accepted June 4, 2021.

2010 Mathematics Subject Classification. Primary 35Q55, 35Q40.
Key words and phrases. Dirac equations, honeycomb lattice, local well-posedness, non-

smoothness, Bourgain’s space.
K. Lee was partially supported by the National Research Foundation of Korea(NRF)

grant funded by the Korea government(MSIT) (No. 2020R1F1A1A0106876811).

c©2021 Korean Mathematical Society

1445



1446 K. LEE

where ψj1, ψj2 are components of ψj and the coefficients b1, b2 > 0 which are
the amplitude of Bloch waves. The symbol ∗ denotes the convolution operator
in R2 and the ψ† is the complex conjugate transpose of ψ.

Our main equations with the nonlinearity N` are derived from two dimen-
sional Schrödinger equations with honeycomb lattice potential. Its rigorous
derivation appears in [1]. The honeycomb lattice structure has appeared in the
fabrication of graphene, a mono-crystalline graphitic film in which electrons
behave like massless Dirac fermions (see [6]). Also, the nonlinear optics which
model laser beam propagators in particular types of photonic crystals, have the
honeycomb structure (see [2, 14]).

The equation (1.1) for ` = 1 has the scaling invariance structure in Ḣ
1
2 .

That is, for ψ1 the solution to (1.1) with ` = 1, the function ψ1,λ defined by

ψ1,λ(t, x) = λ
1
2ψ1(λt, λx) is also the solution to the equation (1.1) with ` = 1

and satisfies that ‖ψ1,λ(0, ·)‖
Ḣ

1
2

= ‖ψ1(0, ·)‖
Ḣ

1
2

. By this reason, the equation

(1.1) for ` = 1 is said to be mass-supercritical case. Also, since ‖ψ2,λ(0, ·)‖L2
x

=
‖ψ2(0, ·)‖L2

x
for ψ2,λ(t, x) = λψ2(λt, λx), where ψ2 is the solution to (1.1) with

` = 2, the equation (1.1) with ` = 2 has the scaling invariance structure in L2
x.

The equation (1.1) for ` = 2 is called to be mass-critical case.
Now we state the main theorem of this paper. For simplicity of representa-

tion, we set an index s(`) by

s(`) =

{
1
2 if ` = 1,
0 if ` = 2.

Theorem 1.1 (Local well-posedness for Hs data). Let s > s(`)+ 3
8 for ` = 1, 2.

Then (1.1) is locally well-posed for initial data in Hs(R2).

Here a definition of the fractional Sobolev space Hs(R2) is placed in No-
tations below. In particular, LWP result of Dirac equations which have same
nonlinearity N` has been studied in [1] for Hs(R2) with s > 1.

We can prove the results of Theorem 1.1 for massive cases (m > 0) in
the same way as proof of Theorem 1.1. Since the physical model comes from
massless Dirac fermions, we only consider the massless case (m = 0) in this
paper.

Lemma 3.2 is deduced from Selberg’s estimates and we get a coefficient µ
3
8−s

in (3) of Lemma 3.2. Then the condition s > s(`) + 3
8 is necessary in process of

proof of Theorem 1.1 and the coefficient µ
3
8−s makes the gap between scaling

critical index s(`) and our well-posedness index s(`) + 3
8 .

In this paper, we consider Dirac equations with some nonlinearity. Related
equations to (1.1) are well known as semi-relativistic equations as follows:

iut +
√
m2 −∆u = λ|u|2u,(1.2)

iut +
√
m2 −∆u = λ(|x|−1 ∗ |u|2)u.(1.3)
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The Cauchy problem for semi-relativistic equations with power type nonlin-
earity (1.2) has been investigated in [11, 12]. In [11, 12], Dinh ([11]) showed
local well-posedness (LWP) of (1.2) with massless case (m = 0) for Hs(R2)
with s > 3

4 and Fujiwara, Georgiev, and Ozawa extended LWP to global well-

posedness (GWP) for H1(R2). The Cauchy problem for 3 dimensional Hartree
type semi-relativistic equations (1.3) has been investigated in [16, 21]. First
the result of well-posedness was obtained by [21] in Hs(R3) for s ≥ 1

2 . In [21],

global well-posedness holds in H
1
2 (R3) for small data in L2

x. Later this was
improved to s > 1

4 in [16]. Also they ([16]) showed ill-posedness result for

Hs(R3) with s < 1
4 . For (1.3) with d-dimensions (d ≥ 2), Cho and Ozawa ([9])

have revealed the Global well-posedness result for Hs(Rd) with s ≥ 1
2 . Further

results for semi-relativistic equations, we refer to [10].
The difficulty stems from the absence of null-structure of N`. We describe

the difference between ψ†βψ and |ψ|2 where β =
(
1 0
0 −1

)
. The quadratic term

ψ†βψ has a null-structure which represents like |ψ1|2 − |ψ2|2. On the other
hand, another term |ψ|2 = |ψ1|2 + |ψ2|2 does not have the null-structure. Since
this structure induces delicate bilinear estimates, Dirac equations with null-
structure lead to better results than the case without null-structure. However,
we do not use this structure because our nonlinearities N1 are essentially the
same as |ψ|2. For this reason, it is picky to control the nonlinear term N`.
Hence we describe Lemma 3.2 used crucially in the proof of Theorem 1.1.

Also we consider the Dirac equation with Coulomb type nonlinearity which
has null-structure:

(i∂t + α ·D)ψ = λ
(
ψ†βψ

)
ψ,(1.4)

(i∂t + α ·D)ψ = λ
(
|x|−γ ∗

(
ψ†βψ

) )
ψ.(1.5)

As a known result for the equation (1.4), Bejenaru and Herr ([3]) showed the

GWP in H
1
2 (R2). And the known results for the equation (1.5) are in [8, 20].

In [20], An author of this paper revealed the LWP in Hs(R2) with s > γ−1
2

and 1 ≤ γ < 2. It was studied in [8] that global well-posedness and small data
scattering holds in Hs(R2) for s > γ − 1 and 1 < γ < 2. As related to (1.5),
there is a Dirac equation with Yukawa potential. One may find many results
of the Dirac equation which has Yukawa potential nonlinearity in [7, 25–27].

In view of scaling we expect that LWP results for (1.1) is optimal in Hs(`).
For this expectation we introduce the following theorem which denotes the
smooth failure of our main equation (1.1) for s < s(`).

Theorem 1.2. Let s < s(`) and T > 0. If the flow map φ 7→ u in (1.1) exists
as a map from Hs(R2) to C([−T, T ];Hs(R2)), it fails to be C3 at the origin.

If the equation (1.1) has well-posedness in [−T, T ] for some T > 0, the flows
of (1.1) have the smoothness in [−T, T ]. Since Theorem 1.2 implies that the
smoothness of flows of (1.1) fails, This yields the ill-posedness of (1.1) for Hs

with s < s(`).
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The smoothness failure of some equations was studied for many authors
in [4, 16, 20, 22]. Molinet, Saut, and Tzvetkov ([22]), Bejenaru and Tao ([4]),
and Herr and Lenzmann ([16]) have proved the ill-posedness results similar
to Theorem (1.2) for Benjamin-Ono equations, 1-d Schrödinger equations and
semi-relativistic equations, respectively. For Dirac equation, ill-posedness re-
sults have been shown in [20].

It is still opened the well-posedness of (1.1) in Hs(R2) for s(`) ≤ s ≤ s(`)+ 3
8 .

For filling up this gap, we have to obtain better bilinear estimates than Lemma
3.2. For this purpose we should find some structure of nonlinearity of (1.1) like
null-structure. Then we may improve LWP in Hs with sobolev index s below
s(`) + 3

8 .
The paper is organized as follows: In Section 2, we discuss projection opera-

tors. In Section 3, we introduce the function spaces and the bilinear estimates
the most useful on proof of main theorem. In Section 4, we prove Theorem 1.1
via the standard contraction method. In Section 5, we establish the proof of
Proposition 4.1 arising in Section 4. In the last section, we discuss Theorem
1.2 by contradiction argument.

Notations.
• Space and space-time Fourier transform: f̂ = Fx(f) denotes the space vari-
able Fourier transform of f and F−1ξ (g) the inverse Fourier transform of g such
that

Fx(f)(ξ) =

∫
R2

e−ix·ξf(x) dx, F−1ξ (g)(x) = (2π)−2
∫
R2

eix·ξg(ξ) dξ.

f̃ = Ft,x(f) denotes the space-time variables Fourier transform of f such that

Ft,x(f)(τ, ξ) =

∫
R1+2

e−it·τ−ix·ξf(t, x) dtdx.

• Fractional derivatives and Sobolev spaces: Ds = (−∆)
s
2 = F−1x |ξ|sFx, Λs =

(1 − ∆)
s
2 = F−1x (1 + |ξ|2)

s
2Fx for s > 0. Let us denote Ḣs = DsL2

x and
Hs = ΛsL2

x for s ∈ R.
• Mixed-normed spaces: For a Banach space X and an interval I, u ∈ LqIX ∩C
if and only if u(t) ∈ X for a.e. t ∈ I and ‖u‖LqIX := ‖‖u(t)‖X‖LqI < ∞.

Especially, we denote LqIL
r
x = Lqt (I;Lrx(R2)), LqI,x = LqIL

q
x, LqtL

r
x = LqRL

r
x. For

vector-valued function ψ ∈ LqIX∩C2, we also denote that ‖ψ‖LqIX := ‖|ψ|‖LqIX .

• Littlewood-Paley operators: Let us define β1 ∈ C∞0 (−2, 2) such that β1(s) =
1 if |s| ≤ 1 and βλ(s) := β( sλ )− β( 2s

λ ) for λ > 1. Then we define the frequency

projection F(Pλf)(ξ) = βλ(ξ)f̂(ξ), P≤λ =
∑λ
µ=1 Pµ and P≥λ = I−P≤λ2 . Also,

for measurable set S ⊂ R2, R ⊂ R1+2, we denote that Fx(PSf)(ξ) = χS(ξ)f̂(ξ)

and Ft,x(PRf)(τ, ξ) = χR(τ, ξ)f̃(τ, ξ).
• As usual different positive constants depending only on α, κ are denoted by
the same letter C, if not specified. A . B and A & B means that A ≤ CB
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and A ≥ C−1B, respectively for some C > 0. A ∼ B means that A . B and
A & B.

2. Preliminaries

In this section, for simplicity of the Cauchy problem, we define the projection
operators and rewrite the equations (1.1) to integral equations.

2.1. Projection operator

We first define the projections about (1.1) as follows:

Π±(D) :=
1

2

(
I ± α ·D
|η#||∇|

)
.

Then we get

α ·D = |η#||∇|
(
Π+(D)−Π−(D)

)
.

Using these projection operators, we decompose

ψ = ψ+ + ψ−,

where ψ± := Π±(D)ψ. Also, these projection operators satisfy that

Π±(D)Π±(D) = Π±(D), Π±(D)Π∓(D) = 0.

Applying these operator to (1.1) we see that

(∂t ± |η#||∇|)ψ± = −iκΠ±(D)N`(ψ,ψ)ψ(2.1)

for ` = 1, 2 with initial data

ψ±(0) =: ψ0,± ∈ Hs.

To simplify the representation of (2.1), we set the spinner

φ±(t, x) = ψ±

(
t

|η#|
, x

)
.

Hence φ satisfies that

(i∂t ± |∇|)φ± =
1

|η#|
(i∂t ± |η#||∇|)ψ± = − iκ

|η#|
Π±(D)N`(φ, φ)φ

for ` = 1, 2. We still call the spinner to ψ. Then we finally get the second main
equation

(i∂t ± |∇|)ψ± = −iκ#Π±(D)N`(ψ,ψ)ψ,(2.2)

where κ# = κ
|η#| .

By Duhamel’s formula, we can represent the equation (2.2) written as an
integral equation

ψ±(t)=S±(t)ψ0,±+κ#

∫ t

0

S±(t−t′)Π±(D)
[
N`
(
ψ(t′), ψ(t′)

)
ψ(t′)

]
dt′(2.3)
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for ` = 1, 2. Here we define the linear propagator S±(t) as follows:

S±(t)f = e∓it|∇|f.(2.4)

2.2. Fractional Leibniz rule

The following lemma called fractional Leibniz rule is useful in the proof of
LWP.

Lemma 2.1 ([15,17,18]). Let 0 < s < 1, 1 < p <∞. Then

‖Ds(fg)− fDsg − gDsf‖Lp . ‖Ds1f‖Lp1‖Ds2g‖Lp2
provided s = s1 + s2 with 0 ≤ s1, s2 ≤ 1 and 1

p = 1
p1

+ 1
p2

.

The proof of Lemma 2.1 is in [15,17,18].

3. Function spaces and bilinear estimates

3.1. Functions spaces: Xs,b-space

We first introduce Xs,b
± space which will be useful in local theories. (See e.g.

[5, 19,24].) Let us define the norm for s, b ∈ R as follows:

Xs,b
± (T ) :=

{
ψ :
∥∥∥χ[−T,T ]ψ

∥∥∥
Xs,b±

<∞
}

with a norm

‖ψ‖Xs,b± :=

(∫
R1+2

∣∣∣〈ξ〉s 〈τ ∓ |ξ|〉b ψ̃(τ, ξ)
∣∣∣2 dτdξ) 1

2

.

In particular, we denote that Xs,b
±j is Xs,b

+ for ±j = + and Xs,b
±j is Xs,b

− for

±j = −. These function spaces satisfy the embedding for b > 1
2

Xs,b
± (T ) ↪→ C([−T, T ];Hs).

3.2. Bilinear estimates

Theorem 2.1 of [23] leads us the following lemma used in the proof of Lemma
3.2.

Lemma 3.1 (Theorem 2.1 of [23]). Let λ > 0 and L ≥ 1. Let us define the
thickened cones

K±λ,L =
{

(τ, ξ) : |ξ| . λ, τ ∓ |ξ| = O(L)
}
.

Then

‖PK±λ,L∩(R×Bµ)u‖L4
t,x
. µ

1
4λ

1
8L

3
8 ‖PK±λ,L∩(R×Bµ)u‖L2

t,x

for u : R1+2 → C and any ball Bµ ⊂ R2 with radius µ > 0.

The following lemma is crucial in the proof of Theorem 1.1.

Lemma 3.2. Let s > 3
8 , b > 1

2 , and u : R1+2 → C. Then the following holds:
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(1) ‖PBµu‖L4
t,x
. µ

1
4 ‖PBµu‖

X
1
8
,b

±

for u ∈ X
1
8 ,b
± and any ball Bµ with radius

µ > 0,

(2) ‖u‖L4
t,x
. ‖u‖

X
3
8
,b

±

for u ∈ X
3
8 ,b
± ,

(3) ‖Pµ(u1u2)‖L2
t,x
. µ

3
8−s‖u1‖Xs,b±1

‖u2‖Xs,b±2

for µ > 0, uj ∈ Xs,b
±j .

Proof. We first prove (1). Lemma 3.1 yields that, for λ ≥ 1,

‖PBµPλu‖L4
t,x
.
∑
L≥1

µ
1
4λ

1
8L

3
8 ‖PK±λ,L∩(R×Bµ)u‖L2

t,x

.
∑
L≥1

µ
1
4λ

1
8L

3
8 ‖PK±λ,L∩(R×Bµ)u‖L2

t,x

.
∑
L≥1

µ
1
4λ

1
8L

3
8−b‖LbχK±λ,L∩(R×Bµ)ũ‖L2

τ,ξ

.
∑
L≥1

µ
1
4λ

1
8L

3
8−b‖ 〈τ ∓ |ξ|〉b χK±λ,L∩(R×Bµ)ũ‖L2

τ,ξ

. µ
1
4λ

1
8 ‖PBµPλu‖X0,b

±
.

Then we have

‖PBµu‖L4
t,x
.
∑
λ≥1

‖PBµPλu‖L4
t,x
.
∑
λ≥1

µ
1
4λ

1
8 ‖PBµPλu‖X0,b

±
. µ

1
4 ‖PBµu‖

X
1
8
,b

±

.

For (2), by (1) we obtain

‖u‖L4
t,x
.

∑
µ≥1

‖Pµu‖2L4
t,x

 1
2

.

∑
µ≥1

µ
1
4 ‖Pµu‖2

X
1
8
,b

±

 1
2

. ‖u‖
X

3
8
,b

±

.

Let us now prove (3). Using frequency localization and (2), we see that

‖Pµ(u1u2)‖L2
t,x

.
∑

λ1,λ2≥1
µ.λ1∼λ2

‖Pµ(u1,λ1u2,λ2)‖L2
t,x

+
∑

λ1,λ2≥1
λmin.λmax∼µ

‖Pµ(u1,λ1u2,λ2)‖L2
t,x

.
∑

λ1,λ2≥1
µ.λ1∼λ2

‖u1,λ1
‖L4

t,x
‖u2,λ2

‖L4
t,x

+
∑

λ1,λ2≥1
λmin.λmax∼µ

‖u1,λ1
‖L4

t,x
‖u2,λ2

‖L4
t,x

.
∑

λ1,λ2≥1
µ.λ1∼λ2

λ
3
8−s
1 λ

3
8−s
2 ‖u1,λ1

‖Xs,b±1

‖u2,λ2
‖Xs,b±2

+
∑

λ1,λ2≥1
λmin.λmax∼µ

λ
3
8−s
max ‖u1,λ1‖Xs,b±1

‖u2,λ2‖Xs,b±2
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. µ
3
8−s‖u1‖Xs,b±1

‖u2‖Xs,b±2

.

Here we used λmax = max(λ1, λ2), λmin = min(λ1, λ2). �

4. Local well-posedness: Proof of Theorem 1.1

Let us define a complete Banach metric space (Ms,b(T, δ), d) as follows:

Ms,b(T, δ) :=
{
ψ ∈ C

(
[−T, T ] : L2

x

)
∩Xs,b

± (T ) : ‖ψ‖Ms,b < δ
}
,

‖ψ‖Ms,b := ‖ψ+‖Xs,b+
+ ‖ψ−‖Xs,b+

,

d(ψ, φ) := ‖ψ − φ‖Ms,b .

We now consider a map D on Ms,b(T, δ) by

D(ψ) =
∑
±0∈{±}

S±0(t)ψ0,±0

+
∑

±j∈{±}
j=0,1,2,3

κ#

∫ t

0

S±0(t− t′)Π±0(D) [N`(ψ±1 , ψ±2)ψ±3 ] dt′,

where
∑
±0∈{±} F±0 = F+ + F−. Then we first show the map D is a self-

mapping on Ms,b(T, δ). By Lemma 2.1 of [13] we see that∥∥∥χ[−T,T ]S±(t)ψ0,±

∥∥∥
Xs,b±

. T
1
2−b‖ψ0‖Hs

and ∥∥∥∥χ[−T,T ]

∫ t

0

S±(t− t′)f(t′)dt′
∥∥∥∥
Xs,b±

. T 1−b+b′‖f‖Xs,b′

for − 1
2 < b′ < 0 < 1

2 < b ≤ b′ + 1.

Proposition 4.1. Let s > s(`) + 3
8 for ` = 1, 2. Then there exist − 1

2 < b′ <

− 1
4 <

1
2 < b ≤ b′ + 1 and ε > 0 such that∥∥∥N`(ψ1, ψ2)ψ3

∥∥∥
Xs,b

′
±

≤ T ε
3∏
j=1

‖ψj‖Xs,b±j

for all ψ : R1+2 → C2 and ψj ∈ Xs,b
±j with supp(ψj) ⊂ {(t, x) : |t| ≤ T}.

Proposition 4.1 will be proved in the next section. We now assume the
validity of Proposition 4.1. Then we estimate

‖D(ψ)‖Ms,b ≤ C1‖ψ0‖Hs + C2T
ε
∑
±
‖ψ±‖3Xs,b± ≤ C1‖ψ0‖Hs + C2T

εδ3.
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Set C1‖ψ0‖Hs < δ
2 and choose the time T that satisfies C2T

εδ3 < δ
2 . Hence

we see that ‖D(ψ)‖Ms,b < δ. Therefore D is a self-mapping onMs,b(T, δ). We
now describe the fact that D is a contraction mapping on Ms,b(T, δ):

d(D(ψ),D(φ)) = ‖D(ψ)−D(φ)‖Ms,b

≤ C
(
‖ψ‖2Ms,b + ‖φ‖2Ms,b

)
‖ψ − φ‖Ms,b

≤ 2Cδ2‖ψ − φ‖Ms,b <
1

2
d(D(ψ),D(φ))

for δ satisfying that 4Cδ2 < 1
2 .

Therefore this completes the proof of the local existence and uniqueness of
a solution to (1.1).

5. Proof of Proposition 4.1

5.1. Proof of Proposition 4.1

By duality, it suffices to prove that

I` :=

∣∣∣∣∫∫ N`(ψ1, ψ2)ψ3Λsψ†4dtdx

∣∣∣∣ . T ε 3∏
j=1

‖ψj‖Xs,b±j
‖ψ4‖X0,−b′

±4

for ψ4 ∈ X0,−b′
±4

and ` = 1, 2. We set ψj =

(
ψj1
ψj2

)
for j = 1, 2, 3, 4. Then we

have

I1 =

∣∣∣∣∫∫ ( (
b1ψ11ψ21 + 2b2ψ12ψ22

)
ψ31

−
(
b1ψ12ψ22 + 2b2ψ11ψ21

)
ψ32

)(
Λsψ41 Λsψ42

)
dtdx

∣∣∣∣
= C

∑
j,k,l∈{1,2}

∣∣∣∣∫∫ ψ1jψ2jψ3kΛsψ4ldtdx

∣∣∣∣
and

I2 =

∣∣∣∣∫∫ |∇|−1(ψ†1ψ2)ψ3Λsψ†4dtdx

∣∣∣∣
= C

∑
j,k∈{1,2}

∣∣∣∣∫∫ |∇|−1 (ψ1jψ2j

)
ψ3kΛsψ4kdtdx

∣∣∣∣ .
To compute the terms above, we introduce C-valued version estimates below
which will be proved Section 5.2.

Lemma 5.1. The following two estimates hold:

(i) Let s > s(1) + 3
8 . Then there exist − 1

2 < b′ < − 1
4 <

1
2 < b ≤ b′+ 1 and

ε > 0 such that∣∣∣∣∫∫ (u1u2)u3Λsu4dtdx

∣∣∣∣ . T ε 3∏
j=1

‖uj‖Xs,b±j
‖u4‖X0,−b′

±4

(5.1)

for all uj : R1+2 → C and uj ∈ Xs,b
±j with supp(uj) ⊂ {(t, x) : |t| ≤ T}.
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(ii) Let s > s(2) + 3
8 . Then there exist − 1

2 < b′ < − 1
4 <

1
2 < b ≤ b′+ 1 and

ε > 0 such that∣∣∣∣∫∫ [|x|−1 ∗ (u1u2)
]
u3Λsu4dtdx

∣∣∣∣ . T ε 3∏
j=1

‖uj‖Xs,b±j
‖u4‖X0,−b′

±4

(5.2)

for all uj : R1+2 → C and uj ∈ Xs,b
±j with supp(u`) ⊂ {(t, x) : |t| ≤ T}.

By Lemma 5.1, we get

I` . T
ε
∑

j,k=1,2

‖ψ1j‖Xs,b±1

‖ψ2j‖Xs,b±2

‖ψ3k‖Xs,b±3

‖ψ4k‖X0,−b′
±4

. T ε
3∏
j=1

‖ψj‖Xs,b±j
‖ψ4‖X0,−b′

±4

for ` = 1, 2. It completes the proof of Proposition 4.1.

5.2. Proof of Lemma 5.1

Proof of (i) of Lemma 5.1. We first set 7
8 < s ≤ 1. By Hölder inequality and

Lemma 2.1, we can split the left-hand side of (5.1) as follows:∣∣∣∣∫∫ (u1u2)u3Λsu4dtdx

∣∣∣∣
≤
∣∣∣∣∫∫ Λs(u1u2u3)u4dtdx−

∫∫
Λs(u1u2)u3u4dtdx−

∫∫
u1u2 (Λsu3)u4dtdx

∣∣∣∣
+

∣∣∣∣∫∫ Λs(u1u2)u3u4dtdx

∣∣∣∣+

∣∣∣∣∫∫ u1u2 (Λsu3)u4dtdx

∣∣∣∣
=: J1

1 + J2
1 + J3

1 .

We first treat the J1
1 . By Lemma 2.1, we estimate

J1
1 . ‖Λs(u1u2u3)− Λs(u1u2)u3 − u1u2 (Λsu3)‖

L
4
3
t L

2
x

‖u4‖L4
tL

2
x

. ‖Λs(u1u2)‖L2
t,x
‖u3‖L4

tL
∞
x
‖u4‖L4

tL
2
x
.

Let us consider ‖Λs(u1u2)‖L2
t,x

. Like above estimates, Lemma 2.1 yields that

‖Λs(u1u2)‖L2
t,x

.
∥∥∥Λs(u1u2)− (Λsu1)u2 − u1(Λsu2)

∥∥∥
L2
t,x

+
∥∥∥(Λsu1)u2

∥∥∥
L2
t,x

+
∥∥∥u1(Λsu2)

∥∥∥
L2
t,x

.
∥∥∥Λsu1

∥∥∥
L4
tL

2
x

‖u2‖L4
tL
∞
x

+ ‖u1‖L4
tL
∞
x

∥∥∥Λsu2

∥∥∥
L4
tL

2
x

.

By Sobolev embedding and Lemma 3.2 we get∥∥∥uj∥∥∥
L4
tL
∞
x

.
∥∥∥Λs−

3
8uj

∥∥∥
L4
t,x

. ‖uj‖Xs,b±j
(5.3)
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for s > 7
8 , b > 1

2 , and j = 1, 2. By embedding X0, 14 ↪→ L4
tL

2
x, the estimate

(5.3) leads us that

‖Λs(u1u2)‖L2
t,x
. ‖u1‖Xs,b±1

‖u2‖Xs,b±2

.(5.4)

In particular, by (5.3), we have

‖u3‖L4
tL
∞
x
. ‖u3‖Xs,b±3

.(5.5)

Using the estimates (5.4), (5.5), and embedding X0, 14 ↪→ L4
tL

2
x , we see that

J1
1 . ‖u1‖Xs,b±1

‖u2‖Xs,b±2

‖u3‖
X
s, 1

4
±3

‖u4‖
X

0, 1
4

±4

. T δ
3∏
j=1

‖uj‖Xs,b±j
‖u4‖X0,−b′

±4

.

On the other hand, for J2
1 , J

3
1 , we obtain

J2
1 . ‖Λs(u1u2)‖L2

t,x
‖u3‖L4

tL
∞
x
‖u4‖L4

tL
2
x
,(5.6)

J3
1 . ‖u1‖L4

tL
∞
x
‖u2‖L4

tL
∞
x
‖Λsu3‖L4

tL
2
x
‖u4‖L4

tL
2
x
.(5.7)

The estimates for (5.6) are obtained in a similar way to estimates of J1
1 . Hence

we consider (5.7). Using (2) of Lemma 3.2 and Sobolev embedding, we estimate

‖uj‖L4
tL
∞
x
. ‖Λs− 3

8uj‖L4
t,x
. ‖uj‖Xs,b±j

for j = 1, 2,

‖Λsu3‖L4
tL

2
x
. ‖u3‖

Xs,
1
4
. ‖u3‖Xs,b±3

.
(5.8)

Then the estimate (5.8) yields that

J3
1 . T

δ
3∏
j=1

‖uj‖Xs,b±j
‖u4‖X0,−b′

±4

.

Therefore this completes the proof of (5.1). �

Proof of (ii) of Lemma 5.1. The LHS of (5.2) is bounded by∣∣∣∣∫∫ [|x|−1 ∗ (u1u2)
]
u3Λsu4dtdx

∣∣∣∣
≤
∣∣∣∣∫∫ Λs(|∇|−1(u1u2)u3)u4dtdx−

∫∫
Λs|∇|−1(u1u2)u3u4dtdx

−
∫∫
|∇|−1(u1u2)(Λsu3)u4dtdx

∣∣∣∣
+

∣∣∣∣∫∫ Λs|∇|−1(u1u2)u3u4dtdx

∣∣∣∣+

∣∣∣∣∫∫ |∇|−1(u1u2)(Λsu3)u4dtdx

∣∣∣∣
=: J1

2 + J2
2 + J3

2 .
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We first consider the J1
2 . Lemma 2.1 yields that

J1
2

.
∥∥Λs

[
|∇|−1(u1u2)u3

]
− Λs|∇|−1(u1u2)u3 − |∇|−1(u1u2) (Λsu3)

∥∥
L

4
3
t L

2
x

× ‖u4‖L4
tL

2
x

. ‖Λs|∇|−1(u1u2)‖L2
tL

4
x
‖u3‖L4

t,x
‖u4‖L4

tL
2
x

.
∑
µ

‖PµΛs|∇|−1(u1u2)‖L2
tL

4
x
‖u3‖L4

t,x
‖u4‖L4

tL
2
x
.

Using Hardy-Littlewood-Sobolev and Young’s convolution inequality we see
that

‖P≤1Λs|∇|−1(u1u2)‖L2
tL

4
x
. ‖P≤1(u1u2)‖

L2
tL

4
3
x

= ‖β̌1 ∗ (u1u2)‖
L2
tL

4
3
x

. ‖β̌1‖
L

4
3
x

‖u1‖L4
tL

2
x
‖u2‖L4

tL
2
x

. ‖u1‖
X

0, 1
4

±1

‖u2‖
X

0, 1
4

±2

.

In the third inequality, we used the ‖β̌1‖Lpx . 1 for p > 1. And, by Lemma 3.2,
we estimate ∑

µ≥2

‖PµΛs|∇|−1(u1u2)‖L2
tL

4
x

.
∑
µ≥2

µs−1‖Pµ(u1u2)‖L2
tL

4
x
.
∑
µ≥2

µs−
1
2 ‖Pµ(u1u2)‖L2

t,x

.
∑
µ≥2

µ−
1
8 ‖u1‖Xs,b±1

‖u2‖Xs,b±2

. ‖u1‖Xs,b±1

‖u2‖Xs,b±2

.

Also, by the second estimate of (5.8), we get

J1
2 .

3∏
j=1

‖uj‖Xs,b±j
‖u4‖L4

tL
2
x
. T δ

3∏
j=1

‖uj‖Xs,b±j
‖u4‖X0,−b′

±4

.

Estimates for J2
2 are obtained in almost the same way as estimates for J1

2 .
Hence it is left to deal with J3

2 . By Hardy-Littlewood-Sobolev and Young’s
convolution inequality, we have∣∣∣∣∫∫ |∇|−1P≤2 (u1u2) (Λsu3)u4dtdx

∣∣∣∣
. ‖|∇|−1P≤2(u1u2)‖L2

tL
4
x
‖P≤2 [(Λsu3)u4]‖

L2
tL

4
3
x

. ‖P≤2(u1u2)‖
L2
tL

4
3
x

‖(Λsu3)u4‖L2
tL

1
x

. ‖u1‖L4
tL

2
x
‖u2‖L4

tL
2
x
‖Λsu3‖L4

tL
2
x
‖u4‖L4

tL
2
x

. ‖u1‖
X

0, 1
4

±1

‖u2‖
X

0, 1
4

±2

‖u3‖
X
s, 1

4
±3

‖u4‖
X

0, 1
4

±4

.
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Since there is no contribution of P≤1(u1u2), we assume that P≤1(u1u2) = 0.
Let us consider the high-frequency part of J3

2 . By Lemma 3.2 and Bernstein’s
inequality we estimate

J3
2 .

∑
µ≥2

∣∣∣∣∫∫ |∇|−1Pµ(u1u2)(Λsu3)u4dtdx

∣∣∣∣
.
∑
µ≥2

µ−1
∥∥∥Pµ(uλ1

uλ2
)
∥∥∥
L2
tL
∞
x

∥∥∥(Λsu3)u4

∥∥∥
L2
tL

1
x

.
∑
µ≥2

∥∥∥Pµ(uλ1uλ2)
∥∥∥
L2
t,x

∥∥∥Λsu3

∥∥∥
L4
tL

2
x

∥∥∥u4∥∥∥
L4
tL

2
x

.
∑
µ≥2

µ
3
8−s‖u1‖Xx,b±1

‖uλ2
‖Xs,b±2

∥∥∥Λsu3

∥∥∥
L4
tL

2
x

∥∥∥u4∥∥∥
L4
tL

2
x

. T δ
∏
j=1

‖uj‖Xs,b±j
‖u4‖X0,−b′

±4

.

Here we used the assumption s > 3
8 and b′ < − 1

4 . Therefore this completes the
proof of the (5.2). �

6. The proof of Theorem 1.2

This section aims to show Theorem 1.2. It adopts the argument [16, 20, 22]
to prove of smoothness failure of flows of (1.1) with cubic and Hartree type
nonlinearity. As in the proof of [16,22], if the flow map ψ 7→ u is C3 at the origin
from Hs to C([0, T ) ;Hs), we have (6.4). In [16, 22], they showed smoothness
failure of flows of Benjamin-Ono, semi-relativistic equations, respectively. For
the results about Dirac equation, we refer to [20]. Let us consider the system
of equation (` = 1, 2):{

(∂t + α ·D)ψ = −iκN`(ψ,ψ)ψ,
ψ(0) = δψ0 ∈ Hs(R2).

(6.1)

If the flow is C3 at the origin in Hs, then it follows that

∂3δψ(0, t, ·) = 6C
∑

±j ,j=1,2,3,4

∫ t

0

S±1
(t− t′)Π±1(D)(6.2)

×
[
N`
(
S±2

(t′)ψ0, S±3
(t′)ψ0

)
S±4

(t′)ψ0

]
(t′)dt′,

where S±(t) = e−±it|D| for ` = 1, 2. From the C3 smoothness we have that

sup
0≤t≤T

∥∥∥∥∥∥
∑

±j ,j=1,2,3,4

∫ t

0

S±1(t− t′)Π±1(D)(6.3)

×
[
N`
(
S±2(t′)ψ0, S±3(t′)ψ0

)
S±4(t′)ψ0

]
dt′

∥∥∥∥∥
Hs

. ‖ψ0‖3Hs
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for a local existence time T and j = 1, 2. However we show that (6.3) fails for
s < s(`). The explicit statement is as follows:

Proposition 6.1. Let ` = 1, 2. Assume that s < s(`). Then the estimate

sup
0≤t≤T

‖L`(ϕ)(t)‖Hs . ‖ϕ‖
3
Hs(6.4)

fails to hold for all ϕ ∈ Hs, where L`(ϕ)(t) =
∑

±j ,j=1,...,4

L1,...,4
` (ϕ)(t) with

L1,...,4
` (ϕ)(t) =

∫ t

0

S±1
(t− t′)Π±1(D)N`

(
S±2

(t′)ϕ, S±3
(t′)ϕ, βS±4

(t′)ϕ
)
dt′.

Proof. Proposition 6.1 is proven by contradiction. For this purpose, let us
assume that the (6.4) holds. Fix λ � 1. We first choose µ = λ1−ε for fixed
0 < ε� 1. Let us define a box

Bµ = {ξ = (ξ1, ξ2) : |ξ1 − λ| . µ, |ξ2| . µ}

and consider ϕ =

(
F−1ξ χBµ

0

)
. Then we have ‖ϕ‖Hs ∼ µλs.

To lead a contradiction we adopt a following estimate:∣∣∣∣∣∣
∑

±j ,j=1,...,4

Fx
[
L1···4
` (ϕ)(t)

]
(ξ)

∣∣∣∣∣∣ & tµ3+2s(j).(6.5)

We now prove (6.5). By taking Fourier transform we see that

Fx
[
L1···4
` (ϕ)(t)

]
(ξ)

= Π±(ξ)

∫ t

0

∫
e−±1i(t−t′)|ξ|Fx

[
N`
(
S±2

(t′)ϕ, S±3
(t′)ϕ

)]
(σ)

×Fx [S±4
(t′)ϕ] (ξ − σ)dσdt′

= −Π±(ξ)

∫
|σ|.µ

∫
−Bµ

p1···4(t, ξ, σ, ζ)|σ|−1+2s(j)

× χBµ(−ζ)χBµ(σ − ζ)χBµ(ξ − σ)dζdσ,

where −Bµ := {ξ = (ξ1, ξ2) : (−ξ1,−ξ2) ∈ Bµ} and

p1···4(t, ξ, σ, ζ) :=

∫ t

0

e−i(±1(t−t′)|ξ|±2t
′|ζ|±3t

′|σ−ζ|±4t
′|σ|)dt′

=
e−±1it|ξ|(eitω − 1)

iω

with

ω = ±1|ξ| ±2 |ζ| ±3 |σ − ζ| ±4 |σ|.

From the support condition it follows that |σ| . 2µ, provided ξ ∈ B3µ. Then
|ω| . λ.
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We set t = δλ−1−ε for fixed 0 < δ � 1. Since |tω| � 1 for λ large enough,
we get∑
±j ,j=1,2,3,4

p1···4(t, ξ, σ, ζ) =
∑

±j ,j=1,2,3,4

te−±1it|ξ|
(

cos(tω)− 1

itω
+ i

sin(tω)

itω

)
=

∑
±j ,j=1,2,3,4

te−±1it|ξ|(O±(δ) + i)

=
∑

±j ,j=1,2,3,4

te−±1it|ξ|O±(δ) + i
∑

±j ,j=1,2,3,4

te−±1it|ξ|

=
∑

±j ,j=1,2,3,4

te−±1it|ξ|O±(δ) + 8it cos(t|ξ|)

=
∑

±j ,j=1,2,3,4

te−±1it|ξ|O±(δ) + 8it(1 +O(δ)).

Hence we obtain∣∣∣∣∣∣
∑

±j ,j=1,2,3,4

Fx
[
L1···4
` (ϕ)(t)

]
(ξ)

∣∣∣∣∣∣
&

∣∣∣∣∣∣
∑

±j ,j=1,2,3,4

∫
|σ|.µ

∫
−Bµ

p1···4(t, ξ, σ, ζ)|σ|−1+2s(`)

× χBµ(−ζ)χBµ(σ − ζ)χBµ(ξ − σ)dζdσ

∣∣∣∣∣
& t

∣∣∣∣∣
∫
|σ|.µ

∫
−Bµ
|σ|−1+2s(`)χBµ(−ζ)χBµ(σ − ζ)χBµ(ξ − σ)dζdσ

∣∣∣∣∣
& tµ3+2s(`).

Therefore we get (6.5).

We return to the main proof. Since Fx
[
L1···4
` (ϕ)(t)

]
(ξ) = 0 for ξ /∈ B5µ,

(6.5) yields that

‖L`(ϕ)(t)‖Hs =

∥∥∥∥∥∥〈ξ〉s
∑

±j ,j=1,2,3,4

Fx
[
L1···4
` (ϕ)(t)

]
(ξ)

∥∥∥∥∥∥
L2
ξ

& tµ3+2s(`) ‖〈ξ〉s‖L2
ξ(B5µ)

& tµ4+2s(`)λs.

This gives us that

tµ4+2s(`)λs .

∥∥∥∥∥∥〈ξ〉s
∑

±j ,j=1,··· ,4
Fx
[
L1···4
j (ϕ)(t)

]
(ξ)

∥∥∥∥∥∥
L2
ξ

. µ3λ3s.(6.6)
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Therefore, by (6.6) and t = δλ−1−ε, we have

δ . µ−1−2s(`)λ2s+1+ε = λ2s+2s(`)+2ε
(
1+s(`)

)
.(6.7)

Then since (6.7) does not hold for s < s(`) and λ� 1, we reach a contradiction.
This completes the proof of Proposition 6.1. �
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