DOI QR코드

DOI QR Code

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero

균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정

  • Park, Honghwi (School of Electronics Engineering, Kyungpook National Unversity) ;
  • Choi, Muhan (School of Electronics Engineering, Kyungpook National Unversity) ;
  • Park, Hongsik (School of Electronics Engineering, Kyungpook National Unversity)
  • Received : 2018.05.18
  • Accepted : 2018.05.29
  • Published : 2018.05.31

Abstract

Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306(5696), pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
  2. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., Vol. 6, pp. 183-191, 2007. https://doi.org/10.1038/nmat1849
  3. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, Vol. 490, pp. 192-200, 2012. https://doi.org/10.1038/nature11458
  4. Y. -M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. -Y. Chiu, A. Grill, and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene", Science, Vol. 327(5966), pp. 662, 2010. https://doi.org/10.1126/science.1184289
  5. R. M. Westervelt, "Graphene nanoelectronics", Science, Vol. 320(5874), pp. 324-325, 2008. https://doi.org/10.1126/science.1156936
  6. M. Liu, X. Yin, E. U. -Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A graphene-based broadband optical modulator", Nature, Vol. 474, pp. 64-67, 2011. https://doi.org/10.1038/nature10067
  7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, Vol. 324(5932), pp. 1312-1314, 2009. https://doi.org/10.1126/science.1171245
  8. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, pp. 652-655, 2007. https://doi.org/10.1038/nmat1967
  9. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, "Intrinsic response of graphene vapor sensors", Nano Lett., Vol. 9(4), pp. 1472-1475, 2009. https://doi.org/10.1021/nl8033637
  10. H. Yoon, D. Jun, J. Yang, Z. Zhou, S. Yang, and M. M. -C. Cheng, "Carbon dioxide gas sensor using a graphene sheet", Sens. Actuators B Chem., Vol. 157(1), pp. 310-313, 2011. https://doi.org/10.1016/j.snb.2011.03.035
  11. R. Pearce, T. Iakimov, M. Anderson, L. Hultman, A. L. Spetz, and R. Yakimova, "Epitaxially grown graphene based gas sensors for ultra sensitive $NO_2$ detection", Sens. Actuators B Chem., Vol. 155(2), pp. 451-455, 2011. https://doi.org/10.1016/j.snb.2010.12.046
  12. F. Xia, T. Mueller, Y. -M. Lin, A. V. -Garia, and P. Avouris, "Ultrafast graphene photodetector", Nat. Nanotechnol., Vol. 4, pp. 839-843, 2009. https://doi.org/10.1038/nnano.2009.292
  13. J. -H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, "Printed graphene circuits", Adv. Mater., Vol. 19(21), pp. 3623-3627, 2007. https://doi.org/10.1002/adma.200701059
  14. T. Lohmann, K. Klitzing, and J. H. Smet, "Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping", Nano Lett., Vol. 9(5), pp. 1973-1979, 2009. https://doi.org/10.1021/nl900203n
  15. W. H. Lee, J. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, H. -W. Ha, S. Murali, H. Chou, D. Akinwande, K. S. Kim, and R. S. Ruoff, "Simultaneous transport and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic", ACS Nano, Vol. 6(2), pp. 1284-1290, 2012. https://doi.org/10.1021/nn203998j
  16. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, "Atomic structure of graphene on $SiO_2$", Nano Lett., Vol. 7(6), pp. 1643-1648, 2007. https://doi.org/10.1021/nl070613a
  17. D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, and Y. H. Lee, "Probing graphene grain boundaries with optical microscopy", Nature, Vol. 490, pp. 235-239, 2012. https://doi.org/10.1038/nature11562
  18. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transport of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett., Vol. 9(12), pp. 4359-4363, 2009. https://doi.org/10.1021/nl902623y
  19. Y. Yang and R. Murali, "Binding mechanisms of molecular oxygen and moisture to graphene", Appl. Phys. Lett., Vol. 98(12), 093116(1)-093116(3), 2011.
  20. S. -J. Han, Z. Chen, A. A. Bol, and Y. Sun, "Channel-length-dependent transport behaviors of graphene field-effect transistors", IEEE Electron Device Lett., Vol. 32(6), pp. 812-814, 2011. https://doi.org/10.1109/LED.2011.2131113
  21. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnel, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to $SiO_2$", Appl. Phys. Lett., Vol. 99(12), pp. 122108(1)-122108(3), 2011. https://doi.org/10.1063/1.3643444
  22. W. S. Leong, C. T. Nai, and J. T. L. Thong, "What does annealing do to metal-graphene contacts?", Nano Lett., Vol. 14(7), pp. 3840-3847, 2014. https://doi.org/10.1021/nl500999r