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SPECTRAL EXPANSION FOR DISCONTINUOUS SINGULAR

DIRAC SYSTEMS

Bilender P. Allahverdiev and Hüseyin Tuna∗

Abstract. In this work, a discontinuous singular Dirac system is studied.
For this system, a spectral function is constructed. Finally, by using the

spectral function, a spectral expansion formula is given.

1. Introduction

In the last three decades, there has been an increasing interest in the dis-
continuous boundary value problems that appear in various physical problems
(see [14]), geophysics (see [11]), and radio science (see [15]). The discontinuous
boundary value problems were studied in [8, 17, 18, 7, 23].

On the other hand, eigenfunction expansions are important in the study of
various problems in mathematics. When we solve a partial differential equation,
we can use the separation variables method. Then we need an eigenfunction
expansion. There exists a lot of literature devoted to this subject ( [12, 21, 8,
1, 2, 3, 4, 5, 6]).

Consider the discontinuous Dirac system defined as

τ(y) = λy, x ∈ J := J1 ∪ J2,(1)

where J1 := [a, c), J2 := (c, b]; −∞ < a < c < b < +∞;

τ(y) :=

(
0 −1
1 0

)
y′ (x) +

(
p (x) 0
0 r (x)

)
y (x) ,

y (x) =

(
y1 (x)
y2 (x)

)
, λ ∈ C;

p and r are real-valued, Lebesgue measurable functions on J and p, r ∈ L1(Jk),
k = 1, 2. If p, r ∈ L1[c− ϵ, c+ ϵ] for some ϵ > 0,then c is the regular point.
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During the last century, Dirac operators play an important role in quantum
mechanics since the existence of antimatter and a description of the electron
spin are governed by these operators. The study of the fundamental theory of
Dirac operators has a long history (see [20, 12], and references cited therein) and
their spectral theory has also been investigated intensively. Regular impulsive
Dirac operators were studied in [9, 16]. But there is a few study for the singular
case. In [3], Allahverdiev and Tuna studied the resolvent operator of one-
dimensional singular Dirac operator with transmission conditions.

In this paper, we shall construct a spectral function for singular discontin-
uous one-dimensional Dirac operators on semi-unbounded intervals. Later, we
will give an eigenfunction expansion. A similar problem for the impulsive Dirac
system on the whole line was recently investigated by the present authors in
[1].

2. Main Results

Let us consider

(2) τ (y) = λy, x ∈ J,

with the boundary condition

(3) y2 (a) cosβ + y1 (a) sinβ = 0,

and impulsive conditions

(4) y (c+) = Cy (c−) ,

where β ∈ R := (−∞,∞), detC = δ > 0 and C ∈ M2 (R) i.e, C is the 2 × 2
matrix with entries from R.

We adjoin to the problem (2)-(4) the boundary condition

(5) y2 (b) cosα+ y1 (b) sinα = 0,

where α ∈ R.
Now, we will denote by H = L2 (J1 : E)

·
+ L2 (J2 : E) the Hilbert space of

vector-valued functions with values in E and with the inner product (scalar
product)

⟨u, v⟩H :=

∫ c

a

(u (x) , v (x))E dx

+ γ

∫ b

c

(u (x) , v (x))E dx,
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where E := R2, γ = 1
δ , (., .)E denotes the inner product on E and

u (x) =

(
u1 (x)
u2 (x)

)
∈ H,

u1 (x) =

{
u11 (x) , x ∈ J1
u12 (x) , x ∈ J2

, u2 (x) =

{
u21 (x) , x ∈ J1
u22 (x) , x ∈ J2

,

v (x) =

(
v1 (x)
v2 (x)

)
∈ H,

v1 (x) =

{
v11 (x) , x ∈ J1
v12 (x) , x ∈ J2

, v2 (x) =

{
v21 (x) , x ∈ J1
v22 (x) , x ∈ J2.

.

Denote by

ϕ (x, λ) =

(
ϕ1 (x, λ)
ϕ2 (x, λ)

)
,

ϕ1(x, λ) =

{
ϕ11(x, λ), x ∈ J1
ϕ12(x, λ), x ∈ J2

, ϕ2(x, λ) =

{
ϕ21(x, λ), x ∈ J1
ϕ22(x, λ), x ∈ J2

and

χ (t, λ) =

(
χ1 (x, λ)
χ2 (x, λ)

)
,

χ1(x, λ) =

{
χ11(x, λ), x ∈ J1
χ12(x, λ), x ∈ J2

, χ2(x, λ) =

{
χ21(x, λ), x ∈ J1
χ22(x, λ), x ∈ J2

.

the solutions of Eq. (2) which satisfy the following conditions

ϕ11 (a, λ) = − cosβ, ϕ21 (a, λ) = sinβ,

(6) χ12 (b, λ) = cosα, χ22 (b, λ) = − sinα.

and

y (c+) = Cy (c−) ,

where C ∈ M2 (R) and detC = δ > 0. It is clear that the problem (2)-(5) is a
regular self-adjoint problem for the Dirac system.

Now we define the Green matrix of the boundary value problem (2)-(5)

G (x, t, λ) =
1

W (ϕ, χ)

{
ϕ (x, λ)χT (t, λ) , x < t ≤ b, x ̸= c, t ̸= c
χ (x, λ)ϕT (t, λ) , a ≤ t < x, x ̸= c, t ̸= c

(see [12]).
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Definition 2.1. Let M (x, t) be a matrix-valued function in E of two vari-
ables with a ≤ x, t ≤ b. If∫ b

a

∫ b

a

∥M (x, t)∥2E dxdt < +∞,

then M (x, t) is called the Hilbert-Schmidt kernel.

Let us define the operator A by

A {xi} = {yi} ,
where

(7) yi =

∞∑
k=1

aikxk, i = 1, 2, ...

Theorem 2.2 ([19]). If

(8)

∞∑
i,k=1

|aik|2 < +∞,

then A s compact operator in l2.

There is no loss of generality in assuming that λ = 0 is not an eigenvalue of
the problem (2)-(5). Thus we get
(9)

G (x, t) = G (x, t, 0) =
1

W (ϕ, χ)

{
ϕ (x)χT (t) , x < t ≤ b, x ̸= c, t ̸= c
χ (x)ϕT (t) , a ≤ t < x, x ̸= c, t ̸= c

.

Then we have the following theorem.

Theorem 2.3. G (x, t) is a Hilbert-Schmidt kernel.

Proof. It follows from (9) that∫ b

a

dx

∫ x

a

∥G (x, t)∥2E dt < +∞,

and ∫ b

a

dx

∫ b

x

∥G (x, t)∥2E dt < +∞,

due to the inner integral exists and is a linear combination of the products
ϕi (x)χj (t) (i, j = 1, 2), and these products belong to H×H because each of
the factors belongs to H. Hence, we have

(10)

∫ b

a

∫ b

a

∥G (x, t)∥2E dxdt < +∞.

Let us define the operator K by the formula

g(x) := (Kf) (x) =

∫ b

a

G (x, t) f (t) dt.
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Theorem 2.4. K is self-adjoint and compact operator in H.

Proof. Let f, g ∈ H. Since G (x, t) = GT (t, x) and G (x, t) is a matrix-valued
function in E defined on J × J, we conclude that

⟨Kf, g⟩H

=

∫ c

a

((Kf) (x) , g (x))E dx+ γ

∫ b

c

((Kf) (x) , g (x))E dx

=

∫ c

a

∫ c

a

(G (x, t) f (t) , g (x))E dtdx

+ γ

∫ b

c

∫ b

c

(G (x, t) f (t) , g (x))E dtdx

=

∫ c

a

(f (t) ,

∫ c

a

G (t, x) g (x))Edxdt

+ γ

∫ b

c

(f (t) ,

∫ b

c

G (t, x) g (x))Edxdt

= ⟨f,Kg⟩H .

Let us denote by {ϕi (x)}∞i=1 a complete, orthonormal basis of the space H.
From Theorem 2.3, we have

xi = ⟨f, ϕi⟩H

=

∫ c

a

(f (t) , ϕi (t))E dt+ γ

∫ b

c

(f (t) , ϕi (t))E dt,

yi = ⟨g, ϕi⟩H

=

∫ c

a

(g (t) , ϕi (t))E dt+ γ

∫ b

c

(g (t) , ϕi (t))E dt,

aik =

∫ b

a

∫ b

a

(G (x, t)ϕi (x) , ϕk (t))E dxdt (i, j = 1, 2, 3, ...).
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Then, H is mapped isometrically l2. Consequently, our integral operator trans-
forms into the operator defined by the formula (7) in the space l2 by this map-
ping, and the condition (10) is translated into the condition (8). By Theorem
2.2, this operator is compact. Therefore, the original operator is compact.

It follows from Theorem 2.4 and the Hilbert-Schmidt theorem ([10]) that
there exists an orthonormal system φ1, φ2, ... of eigenvectors of the problem
(2)-(5) with corresponding nonzero eigenvalues λ1, λ2, ..., such that

(11)

∫ c

a

∥f (x)∥2E dx+ γ

∫ b

c

∥f (x)∥2E dx =

∞∑
n=0

a2n

where an = ⟨f, φn⟩H .

Let λm,b (m = 1, 2, ...) denote the (real) eigenvalues of this problem and by

ϕm,b (x) =

(
ϕm,b
1 (x)

ϕm,b
2 (x)

)
,

ϕm,b (x) := ϕ (x, λm) ,

ϕm,b
i (x) := ϕi (x, λm) (i = 1, 2),

ϕm,b
1 (x) =

{
ϕm,b
11 (x) , x ∈ J1

ϕm,b
12 (x) , x ∈ J2

,

ϕm,b
2 (x) =

{
ϕm,b
21 (x) , x ∈ J1

ϕm,b
22 (x) , x ∈ J2

the corresponding real-valued eigenfunction which satisfies the conditions (3)-
(5). If

f (x) =

(
f1 (x)
f2 (x)

)
,

f1 (x) =

{
f11 (x) , x ∈ J1
f12 (x) , x ∈ J2

, f2 (x) =

{
f21 (x) , x ∈ J1
f22 (x) , x ∈ J2

,
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f (.) ∈ H and

α2
m,b =

∫ c

a

((
ϕm,b
11 (x)

)2
+
(
ϕm,b
21 (x)

)2)
dx

+ γ

∫ b

c

((
ϕm,b
12 (x)

)2
+
(
ϕm,b
22 (x)

)2)
dx,

then we have

∥f∥2H

=

∫ c

a

(
f2
11 (x) + f2

21 (x)
)
dx+ γ

∫ b

c

(
f2
12 (x) + f2

22 (x)
)
dx

(12) =

∞∑
m=1

1

α2
m,b


∫ c

a

(
f11 (x)ϕ

m,b
11 (x) + f21 (x)ϕ

m,b
21 (x)

)
dx

+γ
∫ b

c

(
f12 (x)ϕ

m,b
12 (x) + f22 (x)ϕ

m,b
22 (x)

)
dx


2

.

which is called the Parseval equality.

Define the function ϱb on [a,∞) by the formula

ϱb (λ) =

{
−
∑

λ<λm,b<0
1

α2
m,b

, for λ ≤ 0∑
0≤λm,b<λ

1
α2

m,b
for λ ≥ 0

.

From (12), we have

(13) ∥f∥2H =

∫ ∞

−∞
F 2 (λ) dϱb (λ) ,

where

F (λ) =

∫ c

a

(f11 (x)ϕ11 (x, λ) + f21 (x)ϕ21(x, λ)) dx

+ γ

∫ b

c

(f12 (x)ϕ12(x, λ) + f22 (x)ϕ22(x, λ)) dx.

Lemma 2.5. Let h > 0. Then the following relation holds

(14)

h∨
−h

{ϱb (λ)} =
∑

−h≤λm,b<h

1

α2
m,b

= ϱb (h)− ϱb (−h) < C,

where C = C (h) is a positive constant C = C (h) not depending on b.
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Proof. Let sinβ ̸= 0. It follows from the condition ϕ21 (a, λ) = sinβ that
there exists a positive number k and nearby a such that

(15)
1

k2

(∫ k

a

ϕ21 (x, λ) dx

)2

>
1

2
sin2 β.

due to ϕ21 (x, λ) is continuous on the region

{(t, λ) : −h ≤ λ ≤ h, a ≤ x ≤ c} .

Let us define fk (x) =

(
fk1 (x)
fk2

(x)

)
by

fk1
(x) = 0, fk2

(x) =

{
1
k , a ≤ x < k
0, x ≥ k.

.

From (13) and (15), we get∫ k

a

(
f2
k1

(x) + f2
k2

(x)
)
dx

=
k − a

k2

=

∫ ∞

−∞

(
1

k

∫ k

a

ϕ21 (x, λ) dx

)
dϱb (λ)

≥
∫ h

−h

(
1

k

∫ k

a

ϕ21 (x, λ) dx

)2

dϱb (λ)

>
1

2
sin2 β {ϱb (h)− ϱb (−h)} .

Now, let sinβ = 0. Then we will define

fk (x) =

(
fk1

(x)
fk2

(x)

)
by

fk,1 (x) =

{
1
k2 , a ≤ x < k
0, x ≥ k.

, fk,2 (x) = 0.

Applying the Parseval equality, we deduce that (14).

We present below for the convenience of the reader.
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Theorem 2.6 ([10]). Let (wn)n∈N (N := {1, 2, ...}) be a uniformly bounded
sequence of real nondecreasing function on a finite interval a ≤ λ ≤ b. Then
there exists a subsequence (wnk

)k∈N and a nondecreasing function w such that

lim
k→∞

wnk
(λ) = w (λ) , a ≤ λ ≤ b.

Theorem 2.7 ([10]). Assume (wn)n∈N is a real, uniformly bounded, se-
quence of non-decreasing function on a finite interval a ≤ λ ≤ b, and suppose

lim
n→∞

wn (λ) = w (λ) , a ≤ λ ≤ b.

If f is any continuous function on a ≤ λ ≤ b, then

lim
n→∞

∫ b

a

f (λ) dwn (λ) =

∫ b

a

f (λ) dw (λ) .

Let H = L2 (J1;E)
·
+L2 (J3;E) be the Hilbert space with the inner product

⟨u, v⟩H :=

∫ c

a

(u (x) , v (x))E dx+ γ

∫ ∞

c

(u (x) , v (x))E dx,

where J3 := (c,∞), γ = 1
δ and

u (x) =

(
u1 (x)
u2 (x)

)
∈ H

u1 (x) =

{
u11 (x) , x ∈ J1
u12 (x) , x ∈ J2

, u2 (x) =

{
u21 (x) , x ∈ J1
u22 (x) , x ∈ J2

,

v (x) =

(
v1 (x)
v2 (x)

)
∈ H,

v1 (x) =

{
v11 (x) , x ∈ J1
v12 (x) , x ∈ J2

, v2 (x) =

{
v21 (x) , x ∈ J1
v22 (x) , x ∈ J2.

.

Let ϱ be any non-decreasing function on R. Denote by L2
ϱ (R) the Hilbert

space of all functions f : R → R which are measurable with respect to the
Lebesque-Stieltjes measure defined by ϱ and such that∫ ∞

−∞
f2 (λ) dϱ (λ) < ∞,

with the inner product

(f, g)ϱ :=

∫ ∞

−∞
f (λ) g (λ) dϱ (λ) .

Theorem 2.8. For the Dirac system (2)-(4), there exists a non-decreasing
function ϱ (λ) on R with the following properties.
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(i) If

f (x) =

(
f1 (x)
f2 (x)

)
,

f1 (x) =

{
f11 (x) , x ∈ J1
f12 (x) , x ∈ J2

, f2 (x) =

{
f21 (x) , x ∈ J1
f22 (x) , x ∈ J2

,

and f(.) ∈ H, then there exists a function F ∈ L2
ϱ (R) such that

(16)

lim
b→∞

∫ ∞

−∞

{
F (λ)−

∫ c

a
(f11 (x)ϕ11(x, λ) + f21 (x)ϕ21(x, λ)) dx

−γ
∫ b

c
(f12 (x)ϕ12(x, λ) + f22 (x)ϕ22(x, λ)) dx

}2

dϱ (λ) = 0,

and the Parseval equality

∥f∥2H =

∫ c

a

(
f2
11 (x) + f2

21 (x)
)
dx

(17) +γ

∫ ∞

c

(
f2
12 (x) + f2

22 (x)
)
dx =

∫ ∞

−∞
F 2 (λ) dϱ (λ)

holds.
(ii) The integrals∫ ∞

−∞
F (λ)ϕ1 (x, λ) dϱ (λ) , and

∫ ∞

−∞
F (λ)ϕ2 (x, λ) dϱ (λ)

converge to f1 and f2 in H, respectively. That is,

lim
n→∞


∫ c

a

{
f11 (x)−

∫∞
−∞ F (λ)ϕ11 (x, λ) dϱ (λ)

}2

dx

+γ
∫ n

c

{
f12 (x)−

∫∞
−∞ F (λ)ϕ12 (x, λ) dϱ (λ)

}2

dx

 = 0,

lim
n→∞


∫ c

a

{
f21 (x)−

∫∞
−∞ F (λ)ϕ21 (x, λ) dϱ (λ)

}2

dx

+γ
∫ n

c

{
f22 (x)−

∫∞
−∞ F (λ)ϕ22 (x, λ) dϱ (λ)

}2

dx

 = 0.

We note that the function ϱ is called a spectral function for the system
(2)-(4).

Proof. Assume that the vector valued function

fξ (x) =

(
fξ1 (x)
fξ2 (x)

)
,

fξ1 (x) =

{
fξ11 (x) , x ∈ J1
fξ12 (x) , x ∈ J2

, fξ2 (x) =

{
fξ21 (x) , x ∈ J1
fξ22 (x) , x ∈ J2
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satisfies the following conditions.

1) fξ (x) =

{
fξ (x) , x ∈ [a, c) ∪ (c, ξ]

0, otherwise
, where ξ < b.

2) fξ (x) has a continuous derivative.

3) fξ (x) satisfies the conditions (3)-(4).
Applying (13) to fξ (x), we conclude that∫ c

a

(
fξ211 (x) + f2

ξ21 (x)
)
dx

(18) +γ

∫ ξ

c

(
fξ212 (x) + f2

ξ22 (x)
)
dx =

∫ ∞

−∞
F 2
ξ (λ) dϱ (λ) ,

where

Fξ (λ) =

∫ c

a

(fξ11 (x)ϕ11 (x, λ) + fξ21 (x)ϕ21 (x, λ)) dx

(19) +γ

∫ ξ

c

(fξ12 (x)ϕ12 (x, λ) + fξ22 (x)ϕ22 (x, λ)) dx.

Since ϕ (x, λ) satisfies the system (2), we see that

ϕ1 (x, λ) =
1

λ
[−ϕ′

2 (x, λ) + p (x)ϕ1 (x, λ)] ,

ϕ2 (x, λ) =
1

λ
[ϕ′

1 (x, λ) + r (x)ϕ2 (x, λ)] .

By (19), we get

Fξ (λ) =
1

λ

∫ c

a

fξ11 (x) [−ϕ′
21 (x, λ) + p (x)ϕ11 (x, λ)] dx

+
1

λ

∫ c

a

fξ21 (x) [ϕ
′
11 (x, λ) + r (x)ϕ21 (x, λ)] dx

+
1

λ
γ

∫ ξ

c

fξ12 (x) [−ϕ′
22 (x, λ) + p (x)ϕ12 (x, λ)] dx

+
1

λ
γ

∫ ξ

c

fξ22 (x) [ϕ
′
12 (x, λ) + r (x)ϕ22 (x, λ)] dx.



496 Bilender P. Allahverdiev and Hüseyin Tuna

Since fξ (x) vanishes in a neighborhood of the point b and fξ (x) and ϕ (x, λ)
satisfy the boundary conditions (3), (4), (5), we obtain

Fξ (λ) =
1

λ

∫ c

a

ϕ11 (x, λ)
[
−f ′

ξ11 (x) + p (x) fξ11 (x)
]
dx

+
1

λ

∫ c

a

ϕ21 (x, λ)
[
f ′
ξ21 (x) + r (x) fξ21 (x)

]
dx

+
1

λ
γ

∫ b

c

ϕ12 (x, λ)
[
−f ′

ξ12 (x) + p (x) fξ12 (x)
]
dx

+
1

λ
γ

∫ b

c

ϕ22 (x, λ)
[
f ′
ξ22 (x) + r (x) fξ22 (x)

]
dx,

by integration by parts.

For any finite h > 0, using (13), we have∫
|λ|>h

F 2
ξ (λ) dϱb (λ)

≤ 1
h2

∫
|λ|>h



∫ c

a
ϕ11 (x, λ)

[
−f ′

ξ11
(x) + p (x) fξ11 (x)

]
dx

+
∫ c

a
ϕ21 (x, λ)

[
f ′
ξ21

(x) + r (x) fξ21 (x)
]
dx

+γ
∫ b

c
ϕ12 (x, λ)

[
−f ′

ξ12
(x) + p (x) fξ12 (x)

]
dx

+γ
∫ b

c
ϕ22 (x, λ)

[
f ′
ξ22

(x) + r (x) fξ22 (x)
]
dx



2

dϱb (λ)

≤ 1
h2

∫∞
−∞



∫ c

a
ϕ11 (x, λ)

[
−f ′

ξ11
(x) + p (x) fξ11 (x)

]
dx

+
∫ c

a
ϕ21 (x, λ)

[
f ′
ξ21

(x) + r (x) fξ21 (x)
]
dx

+γ
∫ b

c
ϕ12 (x, λ)

[
−f ′

ξ12
(x) + p (x) fξ12 (x)

]
dx

+γ
∫ b

c
ϕ22 (x, λ)

[
f ′
ξ22

(x) + r (x) fξ22 (x)
]
dx



2

dϱb (λ)

= 1
h2

{∫ c

a

[
−f ′

ξ11
(x) + p (x) fξ11 (x)

]2
dx

}

+ 1
h2

{∫ c

a

[
f ′
ξ21

(x) + r (x) fξ21 (x)
]2

dx

}

+ γ
h2

{∫ ξ

c

[
−f ′

ξ12
(x) + p (x) fξ12 (x)

]2
dx

}

+ γ
h2

{∫ ξ

c

[
f ′
ξ22

(x) + r (x) fξ22 (x)
]2

dx

}
.
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Then, from (18), we see that

|
∫ c

a

(
fξ211 (x) + f2

ξ21
(x)
)
dx

+γ
∫ ξ

c

(
fξ212 (x) + f2

ξ22
(x)
)
dx

−
∫ h

−h
F 2
ξ (λ) dϱb (λ) |

<
1

h2

{∫ c

a

[
−f ′

ξ11 (x) + p (x) fξ11 (x)
]2

dx

}

+
1

h2

{∫ c

a

[
f ′
ξ21 (x) + r (x) fξ21 (x)

]2
dx

}

+
γ

h2

{∫ ξ

c

[
−f ′

ξ12 (x) + p (x) fξ12 (x)
]2

dx

}

+
γ

h2

{∫ ξ

c

[
f ′
ξ22 (x) + r (x) fξ22 (x)

]2
dx

}
.(20)

By Lemma 2.5, the set{ϱb (λ)} is bounded. Using Theorems 2.6 and 2.7, we
can find a sequence {bk} such that the function ϱbk (λ) converges to a monotone
function ϱ (λ) . Passing to the limit with respect to {bk} in (20), we get

|
∫ c

a

(
fξ211 (x) + f2

ξ21
(x)
)
dx+ γ

∫ ξ

c

(
fξ212 (x) + f2

ξ22
(x)
)
dx

−
∫ h

−h
F 2
ξ (λ) dϱ (λ) |
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<
1

h2

{∫ c

a

[
−f ′

ξ11 (x) + p (x) fξ11 (x)
]2

dx

}

+
1

h2

{∫ c

a

[
f ′
ξ21 (x) + r (x) fξ21 (x)

]2
dx

}

+
γ

h2

{∫ ξ

c

[
−f ′

ξ12 (x) + p (x) fξ12 (x)
]2

dx

}

+
γ

h2

{∫ ξ

c

[
f ′
ξ22 (x) + r (x) fξ22 (x)

]2
dx

}
.

Hence, letting h → ∞, we obtain∫ c

a

(
fξ211 (x) + f2

ξ21 (x)
)
dx

+ γ

∫ ξ

c

(
fξ212 (x) + f2

ξ22 (x)
)
dx =

∫ ∞

−∞
F 2
ξ (λ) dϱ (λ) .

Now, let f be an arbitrary vector valued function on H. It is known that
there exists a sequence of vector valued function {fξ (x)} satisfying the condi-
tion 1-3 and such that

lim
ξ→∞

{∫ ∞

a

(f1 (x)− fξ1 (x))
2dx+ γ

∫ ∞

a

(f2 (x)− fξ2 (x))
2dx

}
= 0.

Let

Fξ (λ) =

∫ c

a

(fξ11 (x)ϕ11 (x, λ) + fξ21 (x)ϕ21 (x, λ)) dx

+γ

∫ ξ

c

(fξ12 (x)ϕ12 (x, λ) + fξ22 (x)ϕ22 (x, λ)) dx.

Then, we have

∥fξ∥2H =

∫ ∞

−∞
F 2
ξ (λ) dϱ (λ) .

Since ∫ c

a

(fξ11 (x)− fξ21 (x))
2dx+ γ

∫ ∞

c

(fξ12 (x)− fξ12 (x))
2dx → 0



Spectral expansion for discontinuous singular Dirac systems 499

as ξ1, ξ2 → ∞, we have∫ ∞

−∞
(Fξ1 (λ)− Fξ2 (λ))

2
dϱ (λ)

=

∫ c

a

(fξ11 (x)− fξ21 (x))
2dx+ γ

∫ ∞

c

(fξ12 (x)− fξ12 (x))
2dx → 0

as ξ1, ξ2 → ∞. Therefore, there exists a limit function F that satisfies

∥f∥2H =

∫ ∞

−∞
F 2 (λ) dϱ (λ) ,

by the completeness of the space L2
ϱ (R) .

Our next goal is to show that the function

Kξ (λ) =

∫ c

a

f11 (x)ϕ11 (x, λ) + f21 (x)ϕ21 (x, λ) dx

+ γ

∫ ξ

c

f12 (x)ϕ12 (x, λ) + f22 (x)ϕ22 (x, λ) dx

converges as ξ → ∞ to F in the metric of space L2
ϱ (R) . Let g be another

vector-valued function in H. By a similar argument, G (λ) be defined by g. It
is clear that ∫ c

a

(f1 (x)− g1 (x))
2dx+ γ

∫ ∞

c

(f2 (x)− g2 (x))
2dx

=

∫ ∞

−∞
{F (λ)−G (λ)}2 dϱ (λ) .

Set

g (x) =

{
f (x) , x ∈ [a, c) ∪ (c, ξ]
0, x ∈ (ξ,∞) .

Then we have ∫ ∞

−∞
{F (λ)−Kξ (λ)}2 dϱ (λ)

= γ

∫ ∞

ξ

(
f2
12 (x) + f2

22 (x)
)
dx → 0 (ξ → ∞) ,

which proves that Kξ converges to F in L2
ϱ (R) as ξ → ∞. This proves (i).

Now, we will prove (ii). Suppose that the functions f (.) =

(
f1 (.)
f2 (.)

)
,

g (.) =

(
g1 (.)
g2 (.)

)
∈ H, and F (λ) and G (λ) are their generalized Fourier
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transforms (see (17)). Then F ∓ G are transforms of f ∓ g. Consequently, by
(17), we have

∫ c

a

(
[f11 (x) + g11 (x)]

2
+ [f21 (x) + g21 (x)]

2
)
dx

+ γ

∫ ∞

c

(
[f12 (x) + g12 (x)]

2
+ [f22 (x) + g22 (x)]

2
)
dx

=

∫ ∞

−∞
(F (λ) +G (λ))

2
dϱ (λ) .

Subtracting the second relation from the first, we get

∫ c

a

[f11 (x) g11 (x) + f21 (x) g21 (x)] dx

(21) +γ

∫ ∞

c

[f12 (x) g12 (x) + f22 (x) g22 (x)] dx =

∫ ∞

−∞
F (λ)G (λ) dϱ (λ)

which is called the generalized Parseval equality.

Set

fτ (x) =

(
fτ1 (x)
fτ2 (x)

)
,

fτ1 (x) =

{ ∫ τ

−τ
F (λ)ϕ11 (t, λ) dϱ (λ) , x ∈ J1∫ τ

−τ
F (λ)ϕ12 (t, λ) dϱ (λ) , x ∈ J2

,

fτ2 (x) =

{ ∫ τ

−τ
F (λ)ϕ21 (t, λ) dϱ (λ) , x ∈ J1∫ τ

−τ
F (λ)ϕ22 (t, λ) dϱ (λ) , x ∈ J2,
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where F is the function defined in (16). Let =

{
g (x) , x ∈ [a, c) ∪ (c, µ]
0, otherwise,

,

where g (.) =

(
g1 (.)
g2 (.)

)
and µ > c. Hence we have

⟨fτ , g⟩H =

∫ c

a

{∫ τ

−τ

F (λ)ϕ11 (x, λ) dϱ (λ)

}
g11 (x) dx

+ γ

∫ µ

c

{∫ τ

−τ

F (λ)ϕ12 (x, λ) dϱ (λ)

}
g12 (x) dx

+

∫ c

a

{∫ τ

−τ

F (λ)ϕ21 (x, λ) dϱ (λ)

}
g21 (x) dx

+ γ

∫ µ

c

{∫ τ

−τ

F (λ)ϕ22 (x, λ) dϱ (λ)

}
g22 (x) dx

=

∫ τ

−τ

F (λ)

{ ∫ c

a
ϕ11 (x, λ) g11 (x) dx

+γ
∫ µ

c
ϕ12 (x, λ) g12 (x) dx

}
dϱ (λ)

+

∫ τ

−τ

F (λ)

{ ∫ c

a
ϕ21 (x, λ) g21 (x) dx

+γ
∫ µ

c
ϕ22 (x, λ) g22 (x) dx

}
dϱ (λ)

=

∫ τ

−τ

F (λ)G (λ) dϱ (λ) .(22)

From (21), we get

(23) ⟨f, g⟩H =

∫ ∞

−∞
F (λ)G (λ) dϱ (λ) .

Subtracting (22) and (23), we have

⟨fτ − f, g⟩H =

∫
|λ|>τ

F (λ)G (λ) dϱ (λ) .

Using Cauchy-Schwarz inequality, we obtain

|⟨fτ − f, g⟩H|2 ≤
∫
|λ|>τ

F 2 (λ) dϱ (λ)

∫
|λ|>τ

G2 (λ) dϱ (λ)

≤
∫
|λ|>τ

F 2 (λ) dϱ (λ)

∫ ∞

−∞
G2 (λ) dϱ (λ) .
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Apply this inequality to the function

g (x) =

{
fτ (x)− f (x) , x ∈ [a, c) ∪ (c, µ]

0, x ∈ (µ,∞)
,

we get

∥fτ − f∥2H ≤
∫
|λ|>τ

F 2 (λ) dϱ (λ) .

Letting τ → ∞ yields the desired result.

References

[1] B. P. Allahverdiev and H. Tuna, Spectral expansion for the singular Dirac system with
impulsive conditions, Turkish J. Math. 42 (2018), 2527–2545.

[2] B. P. Allahverdiev and H. Tuna, Spectral expansion for singular conformable fractional

Dirac systems, Rend. Circ. Mat. Palermo II. Ser. 69 (2020) 1359–1372.
[3] B. P. Allahverdiev and H. Tuna, Resolvent operator of singular dirac system with trans-

mission conditions, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 23 (2019), no. 538,

85–105.
[4] B. P. Allahverdiev and H. Tuna, Eigenfunction expansion in the singular case for Dirac

systems on time scales, Konuralp J. Math. 7 (2019), no. 1, 128–135.

[5] B. P. Allahverdiev and H. Tuna, On expansion in eigenfunction for Dirac systems on
the unbounded time scales, Differ. Equ. Dyn. Syst. 30 (2022), 271–285.

[6] B. P. Allahverdiev and H. Tuna, The Parseval equality and expansion formula for sin-
gular Hahn-Dirac system. In S. Alparslan Gök, & D. Aruğaslan Çinçin (Ed.), Emerging
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