Browse > Article
http://dx.doi.org/10.5369/JSST.2018.27.3.204

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero  

Park, Honghwi (School of Electronics Engineering, Kyungpook National Unversity)
Choi, Muhan (School of Electronics Engineering, Kyungpook National Unversity)
Park, Hongsik (School of Electronics Engineering, Kyungpook National Unversity)
Publication Information
Journal of Sensor Science and Technology / v.27, no.3, 2018 , pp. 204-208 More about this Journal
Abstract
Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.
Keywords
CVD-graphene; Dirac voltage; Electrical uniformity; Annealing process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Liu, X. Yin, E. U. -Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A graphene-based broadband optical modulator", Nature, Vol. 474, pp. 64-67, 2011.   DOI
2 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, Vol. 324(5932), pp. 1312-1314, 2009.   DOI
3 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, pp. 652-655, 2007.   DOI
4 Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, "Intrinsic response of graphene vapor sensors", Nano Lett., Vol. 9(4), pp. 1472-1475, 2009.   DOI
5 H. Yoon, D. Jun, J. Yang, Z. Zhou, S. Yang, and M. M. -C. Cheng, "Carbon dioxide gas sensor using a graphene sheet", Sens. Actuators B Chem., Vol. 157(1), pp. 310-313, 2011.   DOI
6 R. Pearce, T. Iakimov, M. Anderson, L. Hultman, A. L. Spetz, and R. Yakimova, "Epitaxially grown graphene based gas sensors for ultra sensitive $NO_2$ detection", Sens. Actuators B Chem., Vol. 155(2), pp. 451-455, 2011.   DOI
7 F. Xia, T. Mueller, Y. -M. Lin, A. V. -Garia, and P. Avouris, "Ultrafast graphene photodetector", Nat. Nanotechnol., Vol. 4, pp. 839-843, 2009.   DOI
8 J. -H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, "Printed graphene circuits", Adv. Mater., Vol. 19(21), pp. 3623-3627, 2007.   DOI
9 T. Lohmann, K. Klitzing, and J. H. Smet, "Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping", Nano Lett., Vol. 9(5), pp. 1973-1979, 2009.   DOI
10 W. H. Lee, J. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, H. -W. Ha, S. Murali, H. Chou, D. Akinwande, K. S. Kim, and R. S. Ruoff, "Simultaneous transport and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic", ACS Nano, Vol. 6(2), pp. 1284-1290, 2012.   DOI
11 M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, "Atomic structure of graphene on $SiO_2$", Nano Lett., Vol. 7(6), pp. 1643-1648, 2007.   DOI
12 D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, and Y. H. Lee, "Probing graphene grain boundaries with optical microscopy", Nature, Vol. 490, pp. 235-239, 2012.   DOI
13 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transport of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett., Vol. 9(12), pp. 4359-4363, 2009.   DOI
14 Y. Yang and R. Murali, "Binding mechanisms of molecular oxygen and moisture to graphene", Appl. Phys. Lett., Vol. 98(12), 093116(1)-093116(3), 2011.
15 S. -J. Han, Z. Chen, A. A. Bol, and Y. Sun, "Channel-length-dependent transport behaviors of graphene field-effect transistors", IEEE Electron Device Lett., Vol. 32(6), pp. 812-814, 2011.   DOI
16 A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnel, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to $SiO_2$", Appl. Phys. Lett., Vol. 99(12), pp. 122108(1)-122108(3), 2011.   DOI
17 W. S. Leong, C. T. Nai, and J. T. L. Thong, "What does annealing do to metal-graphene contacts?", Nano Lett., Vol. 14(7), pp. 3840-3847, 2014.   DOI
18 K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, Vol. 490, pp. 192-200, 2012.   DOI
19 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306(5696), pp. 666-669, 2004.   DOI
20 A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., Vol. 6, pp. 183-191, 2007.   DOI
21 Y. -M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. -Y. Chiu, A. Grill, and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene", Science, Vol. 327(5966), pp. 662, 2010.   DOI
22 R. M. Westervelt, "Graphene nanoelectronics", Science, Vol. 320(5874), pp. 324-325, 2008.   DOI