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REMARKS ON NONLINEAR DIRAC EQUATIONS IN ONE

SPACE DIMENSION

Hyungjin Huh

Abstract. This paper reviews recent mathematical progresses made on
the study of the initial-value problem for nonlinear Dirac equations in one
space dimension. We also prove the global existence of solutions to some
nonlinear Dirac equations and propose a model problem (3.6).

1. Introduction

We are interested in the following initial value problem for the one dimen-
sional nonlinear Dirac equations

i(∂tU1 + ∂xU1) +mU2 = ∂Ū1
W (U1, U2),

i(∂tU2 − ∂xU2) +mU1 = ∂Ū2
W (U1, U2),

Uj(x, 0) = uj(x),

(1.1)

where Uj : R1+1 → C for j = 1, 2 and m (≥ 0) is a mass. Ū is a complex
conjugate of U . The potential W satisfies the following properties:

1. Symmetry: W (U1, U2) = W (U2, U1).
2. Gauge invariance: W (eiθU1, e

iθU2) = W (U1, U2) for any θ ∈ R.
3. Polynomial in (U1, U2) and (Ū1, Ū2).
It is known [11] that fourth order homogeneous polynomial satisfying the

above properties takes the form

W = a1|U1|
2|U2|

2 + a2(Ū1U2 + Ū2U1)
2 + a3(|U1|

4 + |U2|
4)

+ a4(|U1|
2 + |U2|

2)(Ū1U2 + Ū2U1),

where aj are real constants.
The system (1.1) has the charge conservation

∫

R

|U1(x, t)|
2 + |U2(x, t)|

2dx =

∫

R

|u1(x)|
2 + |u2(x)|

2dx.(1.2)
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When W = |U1|
2|U2|

2, the system (1.1) is called Thirring equations and
takes the form

i(∂tU1 + ∂xU1) +mU2 = |U2|
2U1,

i(∂tU2 − ∂xU2) +mU1 = |U1|
2U2.

(1.3)

The Cauchy problem of (1.3) has been studied by several authors [2, 4, 7,
13]. The global existence of solutions to Thirring equations was studied in
[4] in terms of Sobolev space Hs (s ≥ 1). Low regularity well-posedness was
discussed in [2, 7, 13] showing that there exists a time T > 0 and solution
Uj ∈ C([0, T ], Hs(R)) (s ≥ 0). The stability of solitary wave solutions has
been studied recently in [3, 12]. In particular, they proved in [12] H1 orbital
stability of Thirring equations by observing a new conserved quantity. They
also derived a global uniform bound on the H1 norm for the small L2 initial
data.

When W = 1
4 (Ū1U2 + Ū2U1)

2, the system (1.1) is called Gross-Neveu equa-
tions and takes the form

i(∂tU1 + ∂xU1) +mU2 = Re(Ū1U2)U2,

i(∂tU2 − ∂xU2) +mU1 = Re(Ū1U2)U1.
(1.4)

The initial value problem of (1.4) has been studied in [9, 10, 15]. The global
existence of a solution in Hs (s > 1/2) was proved in [9] by obtaining L∞ of
the solution. The global solution in critical space L2 has been proved in [10]
recently.

When W = |U1|
4 + |U2|

4, we have a system

i(∂tU1 + ∂xU1) +mU2 = |U1|
2U1,

i(∂tU2 − ∂xU2) +mU1 = |U2|
2U2.

(1.5)

The system (1.5) does not have its own name in physical literature but the
following system has been considered in [6] where they present an analysis
of soliton solutions to the following quasi-one dimensional Dirac system for a
Bose-Einstein condensate.

i(∂tU1 + ∂xU1) = |U1|
2U1 + 2Re(U1Ū2)U2 + |U2|

2U1,

i(∂tU2 − ∂xU2) = |U2|
2U2 + 2Re(U1Ū2)U1 + |U1|

2U2,

which is a kind of combination of (1.3), (1.4) and (1.5). The initial value
problem of (1.5) with m = 0 has been studied in [8] in the context of Lebesgue
space Lp. Here we will show global well-posedness inHs (s > 1/2) and existence
of standing waves of the system (1.5).

When W = (|U1|
2 + |U2|

2)(Ū1U2 + Ū2U1), we have a system

i(∂tU1 + ∂xU1) +mU2 = U2(|U1|
2 + |U2|

2) + 2Re(Ū1U2)U1,

i(∂tU2 − ∂xU2) +mU1 = U1(|U1|
2 + |U2|

2) + 2Re(Ū2U1)U2,
(1.6)
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which is Dirac equations with pseudoscalar potential [14] and occurs in the
context of a nonlinear refractive index [1]. As far as we know, there is no result
addressing the initial value problem of (1.6). Here we will show global well-
posedness of a related system (3.2) and propose model equation (3.6) which
has main difficulties of the original equations (1.6) for proving global well-
posedness. The existence of standing waves of the system (1.6) has been studied
in [14].

In Section 2 we prove global existence of solution to the system (1.5) (Theo-
rem 2.2) and show existence of standing waves. In Section 3 we prove Theorem
3.1 and propose the model system (3.6).

2. Remarks on the system (1.5)

In this chapter we are interested in the system (1.5). We will show the
global well-posedness and existence of standing waves. For the proof of global
solvability, we follow the idea of [9]. For the existence of standing waves, we
apply the idea of [14].

2.1. Global existence

To begin with, let us recall basic known facts. Local existence and uniqueness
of solution to (1.1) in Sobolev space Hs(R) can be proved in the standard way
[4, 5].

Theorem 2.1. For the initial data uj(x) ∈ Hs(R) with s > 1/2, there exists

T > 0, depending only on ‖uj(x)‖Hs(R), and a unique solution Uj of (1.1) for
0 ≤ t ≤ T satisfying

Uj ∈ C([0, T ], Hs(R)),

where Uj depends continuously on the initial data.

Our first result is that the local solution in the above theorem can be ex-
tended globally.

Theorem 2.2. For the initial data uj(x) ∈ Hs(R) with s > 1/2, there exists

a unique global solution Uj of (1.5) satisfying

Uj ∈ C([0,∞), Hs(R)).

Proof. Wemake use of the idea in [9]. If we obtain a priori estimate ‖Uj(·, t)‖L∞

≤ f(t) for a bounded function f(t), then energy estimate combined with Gron-
wall’s inequality gives a Hs (s > 1/2) bound of the solution

‖Uj(·, t)‖Hs ≤ g(t),

for a bounded function g(t) which proves Theorem 2.2. To bound ‖Uj(·, t)‖L∞ ,
we multiply (1.5) by Ū1 and Ū2 respectively and take real parts to have

∂t|U1|
2 + ∂x|U1|

2 = 2mIm(U1Ū2),(2.1)

∂t|U2|
2 − ∂x|U2|

2 = 2mIm(U2Ū1),(2.2)
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which implies

∂t(|U1|
2 + |U2|

2) + ∂x(|U1|
2 − |U2|

2) = 0.(2.3)

Integrating (2.3) on the domain

D(x0, t0) = {(x, t)| 0 < t < t0, x0 − t0 + t < x < x0 + t0 − t},

we have by applying Green’s Theorem

2

∫ t0

0

|U1|
2(x0 + t0 − s, s) ds+ 2

∫ t0

0

|U2|
2(x0 − t0 + s, s) ds

=

∫ x0+t0

x0−t0

( |u1(s)|
2 + |u2(s)|

2 ) ds ≤ M,

(2.4)

where we denote M =
∫

R
(|u1(y)|

2 + |u2(y)|
2) dy. Integrating (2.1) along char-

acteristic curve, we have

d

dt
|U1(x+ t, t)| ≤ m|U2(x+ t, t)|.

Integrating both sides and considering (2.4), we obtain

|U1(x+ t, t)| ≤ |u1(x)|+m
M

2
t1/2.

The similar argument applied to (2.2) leads us to

|U2(x− t, t)|2 ≤ |u2(x)| +m
M

2
t1/2.

Therefore we obtain a bound ‖Uj(·, t)‖L∞ ≤ ‖uj‖L∞ +mM
2 t1/2 to prove Theo-

rem 2.2. Note that the embedding of Hs(R) (s > 1/2) to the space of bounded
continuous functions is used to justify the bound on the L∞ norm of the initial
data. �

2.2. Solitary waves

An explicit standing wave solution to the system (1.5) is found here. We
follow the idea in [14] where standing wave solutions of the system (1.6) have
been studied. Plugging the ansatz U1 = eiωtz̄(x), U2 = eiωtz(x) into (1.5) leads
to

z′ − iωz + imz̄ − i|z|2z = 0,

which can be rewritten, with the notation z(x) = f(x) + ig(x) (f, g ∈ R), as
follows

f ′ = −(m+ ω)g − (f2 + g2)g,(2.5)

g′ = −(m− ω)f + (f2 + g2)f.(2.6)

Then g′×(2.5) − f ′×(2.6) gives

d

dx

(
1

2
(f2 + g2)2 − (m− ω)f2 + (m+ ω)g2

)

= 0.
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Considering a boundary condition lim|x|→∞ f(x) = 0 = lim|x|→∞ g(x), we have

1

2
(f2 + g2)2 − (m− ω)f2 + (m+ ω)g2 = 0.(2.7)

Let us define q = g
f . Then we have

q′ =
1

f2

(
(f2 + g2)2 − (m− ω)f2 + (m+ ω)g2

)

=
1

f2

(
(m− ω)f2 − (m+ ω)g2

)

= (m− ω)− (m+ ω)q2,

(2.8)

where (2.7) is used. We have a solution of (2.8)

q(x) = α tanh(βx),(2.9)

where α = (m−ω
m+ω )

1/2, β = (m2 − ω2)1/2 with |ω| < m. Substituting g = fq

into (2.7) and considering (2.9), we have

f2(x) = 2(m− ω)
1− tanh2(βx)

(
1 + α2 tanh2(βx)

)2 ,

where we note that lim|x|→∞ f(x) = 0.

3. Remarks on the system (1.6)

Here we are interested in the following initial value problem

i(∂tU1 + ∂xU1) +mU2 = 2Re(Ū1U2)U1 + U2(|U1|
2 + |U2|

2),

i(∂tU2 − ∂xU2) +mU1 = 2Re(Ū2U1)U2
︸ ︷︷ ︸

(I)

+U1(|U1|
2 + |U2|

2)
︸ ︷︷ ︸

(II)

,(3.1)

with initial data Uj(x, 0) = uj(x). We could not prove the global solvability of
(3.1) by applying the idea of [9]. A problem occurs in estimating the nonlinear
term (II) of (3.1). To make clear the problem, we propose two model systems.
The first system is

i(∂tU1 + ∂xU1) +mU2 = 2Re(Ū1U2)U1,

i(∂tU2 − ∂xU2) +mU1 = 2Re(Ū2U1)U2

(3.2)

which consists of nonlinear term (I) of (3.1). The second one is

i(∂tU1 + ∂xU1) +mU2 = U2(|U1|
2 + |U2|

2),

i(∂tU2 − ∂xU2) +mU1 = U1(|U1|
2 + |U2|

2)
(3.3)

which consists of nonlinear term (II) of (3.1). We can prove the global existence
of solution to the first model equation (3.2).
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Theorem 3.1. For the initial data uj(x) ∈ Hs(R) with s > 1/2, there exists

a unique global solution Uj of (3.2) satisfying

Uj ∈ C([0,∞), Hs(R)).

Proof. As the proof of Theorem 2.2, we will estimate ‖Uj(·, t)‖L∞ to obtain
global solution. Multiplying (3.2) by Ū1 and Ū2 respectively and taking real
parts, we have

∂t|U1|
2 + ∂x|U1|

2 = 2mIm(U1Ū2),

∂t|U2|
2 − ∂x|U2|

2 = 2mIm(U2Ū1).

Note that we obtain the same equations as (2.1), (2.2) although the system
(3.2) is different from (1.5). Then we can follow the same argument as proof
of Theorem 2.2 to prove Theorem 3.1. �

Let us explain the problem of (3.3) in applying the argument of [9]. For the
Gross-Neveu system (1.4), we have the following inequality on the characteristic
curve of U1

d

dt
|U1(x+ t, t)| ≤ |U2(x+ t, t)|2|U1(x + t, t)|+m|U2(x+ t, t)|.(3.4)

Then we can apply the local version of charge conservation (2.4) to control the

integrating factor
∫ t

0
|U2(x + s, s)|2ds. For the equations (3.3), however, we

have on the characteristic curve of U1

d

dt
|U1(x+ t, t)|2 ≤ 2|U2(x + t, t)||U1(x+ t, t)|3 + 2|U2(x+ t, t)|3|U1(x+ t, t)|

+ 2m|U1(x+ t, t)||U2(x+ t, t)|,

which implies

d

dt
|U1(x+ t, t)| ≤ |U2(x + t, t)||U1(x+ t, t)|2 + |U2(x+ t, t)|3(3.5)

+m|U2(x+ t, t)|.

Note that the right hand side of (3.5) has a different algebraic structure from
that of (3.4). Considering integrating factor |U1||U2|, we obtain from (3.5)

|U1(x+ t, t)|

≤ e
∫

t

0
|U1(x+s,s)||U2(x+s,s)|ds

(

|u1(x)|+

∫ t

0

|U2(x+ s, s)|3 +m|U2(x+ s, s)| ds

)

.

If we can control the following quantities, considering the inequality (2.4),
∫ t

0

|U1(x+ s, s)||U2(x + s, s)|ds and

∫ t

0

|U2(x+ s, s)|3ds,

then we can prove the global solvability of (3.1).
Let us propose a simple model system of (3.1). Putting an ansatz

U1(x, t) = f(x, t) and U2(x, t) = i g(x, t),
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where f, g are real valued functions, the system (3.1) reduces to

∂tf + ∂xf +mg = g(f2 + g2),

∂tg − ∂xg −mf = −f(f2 + g2).
(3.6)

The system (3.6) has the similar structures to the equations (1.6) for proving
global well-posedness. We note the conservation of L2 norm

∫

R

|f(x, t)|2 + |g(x, t)|2dx =

∫

R

|f(x, 0)|2 + |g(x, 0)|2dx.

We want to know whether the system (3.6) admits global solution or blows up
in finite time for initial data f(x, 0), g(x, 0) ∈ H1(R).
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