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EIGENVALUES ESTIMATES FOR THE DIRAC OPERATOR
IN TERMS OF CODAZZI TENSORS

THOMAS FRIEDRICH AND Eul CHUL Kim

ABSTRACT. We prove a lower bound for the first eigenvalue of the Dirac
operator on a compact Riemannian spin manifold depending on the scalar
curvature as well as a chosen Codazzi tensor. The inequality generalizes
the classical estimate from [2].

1. Introduction

The first author proved in [2] that the smallest eigenvalue A; of the Dirac
operator D of a compact Riemannian spin manifold (M", g) satisfies
n
! N> o S
() ' = gm—1) "M
where S,;, denotes the minimum of the scalar curvature. The limiting case of
(1) occurs if and only if (M™, g) admits a nontrivial spinor field ¢, satisfying

A ,
Vxth = ==X -4y,
n

where X is an arbitrary vector field on A" and the dot “-” indicates Clifford
multiplication [3]. Improvements of this estimate do typically depend on addi-
tional geometric structures on the considered manifold (M",g) (4, 8, 9]. The
aim of this paper is to show that inequality (1) can be improved in case that a
Codazzi tensor exists.

A symmetric (0, 2)-tensor field 5 on (M™",g) is called a nondegenerate Co-
dozzi tensor [1] if B is nondegenerate at all points of M™ and satisfies

(VxB)(Y, 2) = (VyB)(X, Z)

for all vector fields X,Y, Z. We identify 8 with the induced (1,1)-tensor 3 via
B(X,Y) = g(X,B8(Y)). Let (Ey,...,E,) be a local orthonormal frame field
on (M",g). Then the spin derivative V and the Dirac operator D, acting on
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sections 1 € T'(X(M™)) of the spinor bundle X(M™) over (M™,g), are locally
expressed as [3]

1 n n
VX¢=X(1/J)+ZZEVVXE¢'1/), Dy = Ei- Vg,
=1 i=1
respectively. Moreover, we define the f-twist Dg of the Dirac operator D by
Dgp = Zﬂ ) Vit = ZE Vg-1(E)%-

Theorem 1.1. Let (M", g) be an n-dimensional closed Riemannian spin man-
ifold and consider a nondegenerate Codazzi tensor 5. Denote by G the metric
induced by B via G(X,Y) = g(B(X), B(Y)). Let \; € R and \; € R be the small-
est nonzero eigenvalue of the Dirac operators D and D, respectively. Then we
have

-2
S g\ AF
> inf
) X > i {4(p+1) p+1 2(p+1)F}’
where F : M™ — R is a real-valued function defined by
(51
. po - o)

AF := —(divograd)(F'), and p,q : M™ — R are bounded real-valued functions
satisfying

1
4 ——<p<0, <qg<0,
@ z T
that solve the system of two linear equations
(5) np+c(tf)g= -1, (B p+ T Pg=—c

for some nonzero constant ¢ # 0 € R.
The limiting case of (2) occurs if and only if there exists a spinor field 1,
on (M™,g) such that

(6) Dy = M, Dgth1 = A9y
and
(7 Vxi = MpX ¢ + Mg B7(X) -

hold for all vector fields X. In the limiting case, the parameter ¢ = A\ /A1 is
the ratio of the two eigenvalues.

If B = I is the identity map and p + ¢ = —1/n, then (2) reduces to the
inequality (1). If the eigenvalues of § # I are constant, but not equal, then the
solutions p, ¢ of the linear system are constant, too,

1872 - ctrp™? © = cn — trf1
@p? —nlg P 1Y T (@) - nlB)

ple) =
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Consequently, we obtain a family of inequalities depending on a parameter
¢ # 0 linking A2, Xf and Spin,
., 1
% q(C) Af RN Smin
pe) +1 4(p(c) + 1)
The optimal parameter ¢ is a solution of a quadratic equation, we omit the cor-

responding formulas. A universal though not optimal value for the parameter
cis

18~

trg-t -’
In this case we have p = 0 and ¢ = ~1/|3~
generalizes (1):

1|2, This particular inequality
Corollary 1.2. If the eigenvalues of the Codazzi tensor are constant, then

1 X? 1 1 no =

A > Smm > Smm ’ Smin-
1=y 812 = 871 4n-1)

If tr3~! = 0, the functions p and g do not depend on the parameter c, i.e.,
we obtain a unique inequality. We will formulate the result separately.

Theorem 1.3. Let (M", g) be an n-dimensional closed Riemannian spin man-
ifold and consider a nondegenerate Codazzi tensor such that tr(871) = 0 van-
ishes identically. Let Ay and \; be the smallest nonzero eigenvalue of D and
D, respectively. Then, in the notations of Theorem 1.1, we have

nS + an L nAF }
din-1) (-  2(n-1F
where the real-valued function F : M™ — R is defined by

) F = |det(871)] - |37

The limiting case of (8) occurs if and only if there exists a spinor field v,
on (M™,g) such that

8) A2 > iAan{

A

FEEk B7(X)-n

A
(10) Vxiyr = *'T%X'i/h

hold for all vector fields X .

Let us discuss the 2-dimensional case in detail. Suppose that 5 is traceless
with eigenvalues a, —a. Then we obtain

_ 1 2
det(ﬁl):“&—z—7 'B lzua—z', F = — .

In particular, the formula of the latter theorem simplifies:
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Corollary 1.4. Let (M2,g,8) be a 2-dimensional closed Riemannian spin
manifold with o nondegenerate traceless Codazzi tensor. Denote by *a its
eigenvalues. Then we have

A2 > 1nf{S+a X +a*Ala -4)} .

We apply the corollary to minimal surfaces M2 C X3(k) in a 3-dimensional
space of constant curvature k. The second fundamental form is a Codazzi
tensor. The Gauss equation S = 2k — 2a? yields finally the result

. —2 _
X > x4 inf (()\l—l)a2+a4A(a 4)).

2. Deformation of the metric via a Codazzi tensor

In this section we establish some lemmata that we will need later to prove
Theorem 1.1 and 1.3. Consider a nondegenerate symmetric (0, 2)-tensor field
B on (M™, g) and define a new metric g by

(11) g(X,Y) = g(B(X), B(Y)).

The Levi-Civita connection V of (M™,§) is related to the Levi-Civita connec-
tion V of (M™, g) by [6]

(12) —V—B—l(X) (5_1(3/)) = p! (Vg-1x)Y) + 87N AX)Y)),
where A is the (1,2)-tensor field defined by

29(A(X,Y),2Z) = g(Z, B{(Va-1x)8 YY)} = B{(Vs-1 )~ )(X)}
+9 (Y, B{(Vs-12)8 X))} = B{(Vs-1x)871)(Z)
(13) +9 (X, B{(Vs-18 YY)} = B{(Vs-1v)B~)(2)

Note that the tensor A satisfies

)
N(2)})
N2} -

g(A(X,2),Y) +g(A(X,Y),Z) =0

for all vector fields X,Y,Z. Using formula (12) we can relate the Riemann
curvature tensor R of (M™,g) to the one R of (M™,g) by

R(B'X,712)(87Y) ~ B~HR(BT'X, 871 2)(Y)}
= A H(Ve-1xyM(Z,Y) = (V-1 A) (X, Y)} + B7H{A(X, A(Z,Y)
—AZAX, YN} +7HAA(Z, X)) - A(X,2),Y)}.
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Let (Ey,...,En) be alocal g-orthonormal frame field on (A", g). Then the
scalar curvature S of (M",7) is expressed as [6]

S - g(E:i,R(B~E:, 37 E;)(E;))

ij=1

= 2 9B, (Vs-1m) A(E), B)))

i,j=1

(14) - Z Aiir A — Z Ak Ajik,

i,5,k=1 i,jk=1
where A;jp = g(A(E;, E;), Ey). We now review briefly the behavior of the
Dirac operator under the deformation (11) of metrics. Let (M), and £(M)z
be the spinor bundles of (M™, g) and (M",3), respectively. There are natural

=L

isomorphisms 871 : T(M) — T(M) and §=1 : B(M), — ¥(M); preserving
the inner products of vectors and spinors as well as the Clifford multiplication:

GB7IX,B7Y) = g(X.Y), (B lp.B 1) 5 = (0,0,

(B7X) - (B19) = BUX -9), X,Y €T(T(M)), p.v € [(S(M),).

For each spinor field ¢ on (M™, g) we denote by ¢ := B?l (1) the correspon_ding
spinor field on (M™,5). We will use the same notation f(z vector fields, X :=
B71(X). Tt follows from (12) that the spinor derivatives ¥, V are related by

_ - 1 & e e
(15) Vﬂ_l(EJ)w: Vﬁ~1(EJ)’¢’+Z Z /\jk[Ek 'El 'w.
k=1

Let w and Q be a 1-form and a 3-form generated by the tensor A via

n

w= Z AR EX, E* .= g(-, E),

J.k=1
and
Q= Z (Ajkl + J\klj + Aljk)Ej AE¥ A El,

j<k<l

respectively. The Dirac operator D of (M™,§) can be expressed through the
B-twist D of D as
D% = Y E-Viv
i=1

n n
1 e
= Ei - Va-mgv + 3 Y AwE;EiE(-v
i=1 Ik, =1
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(16) = D5¢—~;-w-1/2+%ﬂ-1/)

—2 i —
and the square D~ of the Dirac operator D as

—_

D'% = DpoD)@) - 5 Dsbh+ ;0 Dg¥

1 1 1
—5Dslw )+ 35 D(Q- ) + Fw-w 9

1 1 1
17 -~QwYp-—-w-Q- -Q-Q-P.
(a7) I PR LR
In the paper we focus our attention on an interesting property of the tensor
A.
Note that

AXY) =AY, X) = B{(V1xBY)} = B{(Vs-1y (X))}
= —(Vg-1xB)(B7'Y) + (Vg-1y B) (87 X).
Therefore, if 8 is a Codazzi tensor, then A = 0. Consequently, all the equations

simplify remarkably when f is a Codazzi tensor.

Lemma 2.1. Let 8 be a nondegenerate Codazzi tensor on (M™,g). Then we

have:
n

(18) S = Y g(B,R(BE, B E)(E;)),
7,7=1

(19) VXE = Wa

(20) Dy = Dgi,

(21) D'% = (DsoDp)®).

We close the section with some more lemmata needed in the next section.

Lemma 2.2. Let B be a nondegenerate symmetric tensor field on (M™,g). If
there exists a nontrivial spinor field ¥ on (M™,g) such that

(22) Vxt =pX Dy +qf 7 (X) Dgy

holds for some real-valued functions p,q : M™ — R and for all vector fields
X, then

(23) (14 np)Dy = —qtr(8~")Dg,
(24) (1+q|87'*)Dgyp = —ptr(B8~)Dy.

Lemma 2.3. Let (-, ) := Re(, :) denote the real part of the standard Her-
mitian product (-, -} on the spinor bundle X(M) over M™. Let ) and F' be a
spinor field and a real-valued function on M™, respectively. Then we have

F-A@W,9) — (¥, ¢) - AF = div{(y), ¢)gradF — F grad(y,9)}.
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3. Proof of the theorems

Note that the volume form 7 of (M",§) is related to the one y of (M™,g)
by
(25) i = |det(87")|p.
Let Q:T'(T(M)) xT(X(M)y) — ['(X(M),) be a twistor-like operator defined
by
Qx(p) =Vxyp—pX Dp~qB~H(X) Dsp,
where p,q: M™ — R are some real-valued functions. Then we have

n

Z(QE] (©), QE;(¥))

j=1
= div[Z(cp, E; - Do+ Vg,0)E;| + (np®> + 2p+ 1)(Dy, Dy)

i=1

(26) —}15(@7 ©) + {¢*|87'1* + 20} (Do, Da) + 2pg tx(8~")(Dyp, D).

Now, let ¢/ be an eigenspinor of D with eigenvalue A # 0 € R. By Lemma 2.3,
we then see that

n
. , 1 ,
(27) / Fdiv| Y (0, E; - Db + Vi, ), |u = —3 / () A(F)
Mr J=1 M
holds for any real-valued function F : M™ — R, since (¢, F; - ¢) = 0. Let
A1 # 0 be the smallest eigenvalue of D. Making use of (20), (25), (26), (27)
and introducing free functions F,B,C : M" —» R (We assume that F is a

positive function.) to control the unnecessary terms, we compute

m = [ [03.09)-X@0]n

Mn
+ F (QEj(¢)7QE1(¢))+BQ(DB¢’—CD%D3¢—CD¢)] I
ae L 71
- / X2 ((n? + 20+ DF + B2C?)
Mn

~FS = Ryldet(5 )] - (AF)] (. v
+
]

(28)  +((@8F +20)F + B+ |det(87)] ) (Dt Daw} .

2A(paF ux(5™") ~ BC) (. Dyv)
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We choose the functions B,C in such a way that the second integral of (28)
vanishes and the equations (23), (24) are satisfied with Dgy) = CDv. To this
end, it is required that the relations

_ 1+ np)
29 B®=—qF(1+q87'), cr= 2L
) Ardd™ ) = e
hold. Note that (29) implies, in particular, the restriction (4) :
1 1
-~ _<g<0 ~Z<p<O.
prp =<t TR erst

Now choose

det(87! _ _
@ == a0+ )

so that the last line in the latter part of (28) vanishes. Then we obtain

-

Mn
which proves the inequality of Theorem 1.1. The functions optimal for p and
q are to be found when considering the limiting case. The former part of (28)
yields in the limiting case that

(31) DYy = Mty = Dgthy = CAy 9.
Since A\; = CAy, we find that the function C' must be a nonzero constant
C =c#0€R Then, from (31) and (23), (24), we obtain the two relations in

(5) immediately. The condition (6), (7) for the limiting case is easy to check.
To prove Theorem 1.3 we consider the integral

H o= [ (0709 - %@+ [ [FY 060,08 0)]n

Mn Mn Jj=1

N(p+ 1)F — TFS - ldet(5 )] = 3(AF) | (0 )n 2 0,

_ / [)\Q(an bop+1)F - ips — Xi|det(871)| ~ %(AF)] CRTT

Mn

G+ [ (@ P+ 208 + 10| Ds, Dy
Mn
and choose the free parameters p, q, F' as
1 1

PI—E, q:_|[3‘—1|2’

F = |det(87H|I87"".

Then the last line in the latter part of (32) vanishes and we have

0, - / lMQ_F LFS — Reldet(57)] ~ £ (AF)| (0,9 2 0.

n 4

M'n.
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This proves the inequality (8). The condition (10) for the limiting case is clear.

Remark 3.1. Let X\; # 0 € R be the smallest eigenvalue of D. Suppose that
there exist a nonzero constant A # 0 € R and a spinor field ¢ such that the
following equations hold:

Dy = M, Dgp = My, Vxy=2ApX-v+Xgs(X) 9.

Then it turns out that A = Ay is equal to the smallest eigenvalue of D and, in
the limiting case, the constant ¢ in (3) is related to A;, A; by A = cA;.
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