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A NOTE ON GENERALIZED DIRAC EIGENVALUES FOR

SPLIT HOLONOMY AND TORSION

Ilka Agricola and Hwajeong Kim

Abstract. We study the Dirac spectrum on compact Riemannian spin
manifolds M equipped with a metric connection ∇ with skew torsion
T ∈ Λ3

M in the situation where the tangent bundle splits under the
holonomy of ∇ and the torsion of ∇ is of ‘split’ type. We prove an
optimal lower bound for the first eigenvalue of the Dirac operator with
torsion that generalizes Friedrich’s classical Riemannian estimate.

1. Introduction

It is well-known that for a Riemannian manifold (M, g), the fact that the

holonomy representation of the Levi-Civita connection decomposes in several

irreducible modules has strong consequences for the geometry of the manifold

– by de Rham’s theorem, the manifold is locally a product, and the spectrum

of the Riemannian Dirac operator Dg can be controlled ([7], [21]).

If the Levi-Civita connection is replaced by a metric connection with torsion,

not much is known, neither about the holonomy nor about the implications for

the spectrum. This note is a contribution to the much larger task to improve

our understanding of the holonomy of metric connections with skew-symmetric

torsion. The foundations of the topic were laid in [4] (see also the review

[2]), substantial progress on the holonomy in the irreducible case was achieved

in [26] and [25]. If the connection ∇ is geometrically defined, that is, it is

the characteristic connection of some G-structure on (M, g), one is interested

in the spectrum of the associated characteristic Dirac operator /D, a direct

generalization of the Dolbeault operator for a hermitian manifold and Kostant’s

cubic Dirac operator for a naturally reductive homogeneous space. In [6], it

was outlined that the first eigenvalue of /D may be estimated from below if the
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torsion is parallel; however, the paper could only deal with G-structures on a

case by case basis. A first general eigenvalue estimate depending only on the

connection ∇ was given by means of twistor theory in the authors’ joint paper

[3] with J. Becker-Bender. In this paper, we also examined the case that the

manifold was reducible, that the holonomy of the connection ∇ decomposed

accordingly, and that the torsion 3-form had no mixed parts.

This note is the first article devoted to the situation that the holonomy

representation of ∇ on TM splits into several irreducible submodules, but the

underlying manifold can yet be irreducible. We can then prove an optimal

eigenvalue estimate (Corollary 2.1) for the Dirac operator /D under the assump-

tion that the torsion has no non-trivial contribution on any of the ∇-parallel

distributions of TM – we call (M, g,∇) then a manifold with split holonomy

(see Definition 2.1). Examples show that such geometries arise quite naturally

in the investigation of G-structures, a fact that had not been observed before.

2. The estimate

2.1. Geometric set-up

We assume that (Mn, g) is an oriented Riemannian manifold endowed with

a metric connection ∇ with skew-symmetric torsion T ∈ Λ3(Mn),

∇XY := ∇g
XY +

1

2
· T (X,Y,−).

The holonomy group Hol(Mn;∇) is then a subgroup of SO(n), and we shall

assume that it is a closed subgroup to avoid pathological cases. In order to

distinguish it from the torsion, the tangent bundle and its subbundles will

be denoted by TMn, T1, T2 . . .. Recall that for a ∇-parallel distribution, the

standard proof of the following basic lemma carries over from Riemannian

geometry without modifications (see for example [23, Prop. 5.1]).

Lemma 2.1. Let T ⊂ TMn be a parallel distribution and Y ∈ T . For any

X ∈ TMn, ∇XY is again in T ; in particular, R(X1, X2)Y ∈ T for any X1, X2.

Let T be a parallel distribution, N its orthogonal distribution defined by

Nx := T ⊥
x in every point x ∈ Mn. The fact that all elements of Hol(Mn;∇)

are orthogonal transformations implies that N is again a parallel distribution.

Thus, the tangent bundle splits into an orthogonal sum of parallel distributions

(ni := dim Ti)
TMn = T1 ⊕ · · · ⊕ Tk, and Hol(Mn;∇) ⊂ O(n1)× · · · ×O(nk) ⊂ SO(n).

We assume that every distribution Ti is again orientable and that the holonomy

preserves the orientation, i.e., we assume

Hol(Mn;∇) ⊂ SO(n1)× · · · × SO(nk).

We denote an orthonormal frame of Ti by ei1, . . . , e
i
ni
, i = 1, . . . , k. For con-

venience, we assume that the spaces Ti are numbered by ascending order,
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n1 ≤ n2 ≤ · · · ≤ nk. We recall the following properties of the curvature of

the connection ∇ from our previous article [3]:

(1) Since the distributions Ti, Tj are orthogonal, Lemma 2.1 implies for any

vector fields X,Y that g(R(X,Y )Ti, Tj) = 0 if i 6= j.

(2) The Ambrose-Singer theorem implies that the curvature operator

R(X,Y ) vanishes if X ∈ Ti, Y ∈ Tj , i 6= j.

(3) The Ricci tensor has block structure,

Ric =







Ric1 0

0
. . . 0

0 Rick






,

i.e., Ric(X,Y ) 6= 0 can only happen if X,Y ∈ Ti for some i.

(4) The scalar curvature splits into ‘partial scalar curvatures’ Scali :=

trRici, and Scal =
∑k

i=1 Scali.

Be cautious that despite of the block structure of the Ricci curvature, one has

in general that R(X,Y, U, V ) 6= 0 if X,Y ∈ Ti, U, V ∈ Tj for i 6= j. The space

of 3-forms splits under the holonomy representation into

Λ3(T ) =

k
⊕

i=1

Λ3(Ti)⊕
⊕

i6=j

Λ2(Ti) ∧ Tj ⊕
⊕

i<j<k

Ti ∧ Tj ∧ Tk.

In our first paper [3], we treated in detail the situation that the torsion T of the

connection ∇ is entirely contained in the first summand, i.e., may be written

as a sum T =
∑

i Ti with Ti ∈ Λ3(Ti). This is basically the case when M is

locally a product.

The main point of this note is the observation that the other extreme case,

i.e., that T consists only of terms of the third type, can also be controlled and

is in fact not so exotic as it may appear. Examples will be given in the last

section. Thus, we define:

Definition 2.1. If the torsion T satisfies T (X,Y ) = 0 whenever X,Y ∈ Ti
and ∇T = 0, we shall call (M, g,∇) a manifold with split holonomy.

Although the definition would make sense without the additional assump-

tion ∇T = 0, we shall see in the sequel that our method for estimating Dirac

eigenvalues relies strongly on this condition. Obviously, interesting split ge-

ometries (T 6= 0) can only exist if k ≥ 3, i.e., the tangent bundle splits into at

least three subbundles.

Example 2.1. A metric almost contact manifold M of dimension 2n+ 1 has

structure group U(n), embedded as upper (2n) × (2n)-matrices in O(2n+ 1).

Thus, the holonomy of a characteristic connection (if existent) is necessarily

reducible, the tangent bundle TM splits into a 2n-dimensional and a one-

dimensional parallel distribution. This is not yet sufficient for a manifold with

split holonomy; but in many cases, TM decomposes further with a torsion of
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split type (see Section 3). On the other side, a strict G2-manifold or Spin(7)-

manifold (i.e., without further reduction to a subgroup G ⊂ G2, Spin(7))

cannot be of split holonomy, since G2 and Spin(7) act by an irreducible repre-

sentation.

2.2. Dirac operators and Schrödinger-Lichnerowicz formulas

Let us assume from now on thatM is also a spin manifold. Let pi denote the

orthogonal projection from TMn onto Ti and define the ‘partial connections’

∇i
X := ∇pi(X), hence ∇ =

k
∑

i=1

∇i.

We use the same notation for their lifts to the spinor bundle ΣM . They induce

the notions of ‘partial Dirac operators’ and ‘partial spinor Laplacians’ (µ is the

usual Clifford multiplication) through

Di := µ ◦ ∇i, D =

k
∑

i=1

Di, ∆i := (∇i)∗∇i, ∆ =

k
∑

i=1

∆i.

As long as the connection is not further specified, this is a correct definition; if∇
is chosen to be an invariant connection for a G structure, i.e., a characteristic

connection, the ‘right’ Dirac operator to consider is the characteristic Dirac

operator /D associated with the connection with torsion T/3. Nevertheless, we

shall also use Di and D as an intermediate tool.

At a fixed point p ∈ Mn we choose orthonormal bases ei1, . . . , e
i
ni

of the

distributions Ti (i = 1, . . . , k) such that (∇eim
e
j
l )p = 0 for all suitable indices

i, j,m, l. This means in particular that [eim, e
j
l ] = −T (eim, ejl ) and ∇g

eim
eim = 0.

Denoting ∇eim
by ∇i

m, the partial Dirac and Laplace operators may then be

expressed as

Di :=

ni
∑

m=1

eim∇i
m, ∆i := −

ni
∑

m=1

∇i
m∇i

m.

The divergence term of the Laplacian vanishes because of ∇g

eim
eim = 0. We

compute the squares of the partial Dirac operators Di.

Proposition 2.1. If (M, g,∇) is a manifold with split holonomy, the partial

Dirac operators Di satisfy the identities

(Di)
2ψ = ∆iψ + σ̃i

T +
1

4
τi · ψ,

where

σ̃i
T = =

1

2

∑

k<l,p<q,

eike
i
lepeq 4-form

R(eik, e
i
l , ep, eq)e

i
ke

i
lepeq(1)

for any numbering {ep}p=1,...,n of the total orthonormal frame ∪k
i=1{ei1, . . . , eini

}.
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Proof. For the first identity, let k and l be indices running between 1 and

dim Ti = ni. We split the sum into terms with k = l and k 6= l,

(Di)
2ψ =

ni
∑

k,l=1

eik∇i
ke

i
l∇i

lψ

= −
ni
∑

k=1

∇i
k∇i

kψ +
∑

k 6=l

eike
i
l∇i

k∇i
lψ

= ∆i +
∑

k<l

eike
i
l(∇i

k∇i
l −∇i

l∇i
k)ψ

and express the second term through the curvature in the spinor bundle,

(Di)
2ψ = ∆iψ +

∑

k<l

eike
i
l

[

RΣ(eik, e
i
l)−∇T (ei

k
,ei

l
)

]

ψ.

By our assumption of split holonomy, T (eik, e
i
l) = 0, so the corresponding term

vanishes. RΣ in turn can be expressed through the curvature R (see [1], [3]),

and, by the curvature properties listed before, only terms with all four vectors

inside Ti can occur:

∑

k<l

eike
i
lR

Σ(eik, e
i
l) =

1

2

∑

k<l

eike
i
lR(e

i
k ∧ eil) · ψ

=
1

2

∑

k<l,p<q

R(eik, e
i
l, ep, eq)e

i
ke

i
lepeqψ.

Note here that ep, eq are not necessarily from Ti. The summands with same

indices add up to half the partial scalar curvature, while different indices yield

the Clifford multiplication by the 4-form σ̃T by (1),

∑

k<l

eike
i
lR

Σ(eik, e
i
l) = σ̃i

T +
1

4
τi. �

Recall that the characteristic Dirac operator /D2 is linked to the Laplacian

of the connection ∇ through the following Schrödinger-Lichnerowicz formula

([4], [13]). Here, Scalg and Scal denote the scalar curvatures of the Levi-Civita

connection and the new connection ∇, respectively, and

σT :=
1

2

∑

k

(ek T ) ∧ (ek T ).

Theorem 2.1. For ∇T = 0, the spinor Laplacian ∆ and the square of the

Dirac operator /D are related by

(2) /D2 = ∆− 1

4
T 2 +

1

4
Scalg +

1

8
‖T ‖2 = ∆c + σT +

1

4
Scal +

1

4
T 2.

Then the Dirac operators /D and Dc
i satisfy the following relationship:
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Proposition 2.2. If (M, g,∇) is a manifold with split holonomy, we have

(3)

k
∑

i=1

σ̃i
T = σT ,

which implies

(4)

k
∑

i=1

(Di)
2ψ = ∆ψ + σTψ +

1

4
Scalψ = /D

2
ψ − 1

4
T 2ψ.

Proof. For the identity (3), observe that ∇T = 0 implies dT = 2σT , hence the

first Bianchi identity is reduced to

X,Y,Z

S R(X,Y, Z, V ) = σT (X,Y, Z, V ).

From the symmetry property of R(X,Z,U, V ) with respect to X,Y and U, V

and Lemma 2.1, it holds that R(eim, e
j
l ) = 0 for i 6= j. Thus, we have the

following equation for the 4-form and the partial 4-forms:

σT =
1

2

∑

p<q,r<s

R(ep, eq, er, es)epeqeres

=
∑

i

1

2

∑

p<q,r<s,ep,eq∈Ti

R(ep, eq, er, es)epeqeres =
∑

i

σ̃i
T .

The equality (4) is then a consequence of Proposition 2.1, (2) and (3). �

2.3. An adapted twistor operator

For our eigenvalue estimate, the crucial point is to use an adapted twistor

operator. Define an operator P : Γ(ΣM) −→ Γ(T ∗ ⊗ ΣM) by

Pψ := ∇cψ +

k
∑

i=1

1

ni

ni
∑

l=1

eil ⊗ eil ·Dc
iψ.

By a direct computation, one checks

‖Pψ‖2 =
∫

〈(∆ −
k
∑

i=1

1

ni

(Di)
2)ψ, ψ〉dM.(5)

The crucial step is the following integral identity. Recall that the dimensions

ni of the distributions Ti are chosen to be ordered, n1 ≤ n2 ≤ · · · ≤ nk:

Theorem 2.2. Let (M, g,∇) be a manifold of split holonomy. Then the Dirac

operator /D satisfies
∫

(

/D2ψ, ψ
)

dM =
nk

4(nk − 1)

∫

(Scalgψ, ψ) dM

+

∫
((

nk

8(nk − 1)
||T ||2 − 1 + nk

4nk − 4
T 2

)

ψ, ψ

)

dM
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+
nk

nk − 1
||Pψ||2 + nk

nk − 1

k−1
∑

i=1

(

1

ni

− 1

nk

)

‖(Dc
i )

2ψ‖2.

Proof. From the generalized Schrödinger-Lichnerowicz formula

/D2 = ∆− 1

4
T 2 +

1

4
Scalg +

1

8
‖T ‖2.

So, we compute

∆−
k
∑

i=1

1

ni

(Di)
2 = /D2− 1

nk

(Dk)
2−

k−1
∑

i=1

1

ni

(Di)
2−

[

−1

4
T 2 +

1

4
Scalg +

1

8
‖T ‖2

]

.

By equation (4), this can be rewritten

∆−
k
∑

i=1

1

ni

(Di)
2 = /D2 − 1

nk

/D2 −
k−1
∑

i=1

[

1

ni

− 1

nk

]

(Di)
2

+
1

4nk

T 2 −
[

−1

4
T 2 +

1

4
Scalg +

1

8
‖T ‖2

]

=

[

nk − 1

nk

]

/D
2 −

k−1
∑

i=1

[

1

ni

− 1

nk

]

(Di)
2

− 1

4
Scalg +

[

1

4nk

+
1

4

]

T 2 − 1

8
‖T ‖2.

The identity (5) for the adapted twistor operator P thus implies the desired

identity. �

We now recall the general Schrödinger-Lichnerowicz formula from Theorem

2.1, which relates /D2 and ∆c. Since the torsion T is ∇-parallel, ∆ commutes

with T , and we obtain ([5], Proposition 3.4)

/D
2 ◦ T = T ◦ /D2

.

It is therefore possible to split the spin bundle ΣM in the orthogonal sum of

its eigenbundles for the T action,

ΣM =
⊕

µ

Σµ,

and to consider /D2 on each of them, since∇s and /D2 both preserve this splitting.

We shall henceforth denote the different eigenvalues of T on Σ by µ1, . . . , µl.

This method of evaluating eigenvalues was first described in [6] (see also [19]).

Corollary 2.1. Let λ be an eigenvalue of /D2 with an eigenspinor ψ which lies

in µ-eigenspace of T . Then,

λ(/D2|Σµ
) ≥ nk

4(nk − 1)
Scal

g
min +

nk

8(nk − 1)
||T ||2 − 1 + nk

4(nk − 1)
µ2 := βsplit(µ).



1586 I. AGRICOLA AND H. KIM

The equality holds if and only if Scalg is constant, P (ψ) = 0 and either ni = nk

or Diψ = 0, for all i = 1, . . . , k. For the smallest eigenvalue λ of /D2 on the

whole spin bundle ΣM , one thus obtains the estimate

λ ≥ nk

4(nk − 1)
Scal

g
min+

nk

8(nk − 1)
||T ||2− 1 + nk

4(nk − 1)
max(µ2

1, . . . , µ
2
k) := βsplit.

Proof. The inequality is a direct consequence of Theorem 2.2. �

Remark 2.1. The eigenvalue estimate from [3] for reducible holonomy may not

be applied in this situation. However, two other general eigenvalues may be

compared to our result. Both require only the condition∇T = 0, no assumption

on the holonomy:

(1) In [4], it is proved that

λ ≥ 1

4
Scal

g
min +

1

8
‖T ‖2 − 1

4
max(µ2

1, . . . , µ
2
k) =: βuniv.

This is called the universal eigenvalue estimate, because it is derived

from the universal Schrödinger-Lichnerowicz formula cited in Theorem

2.1.

(2) In the first part of [3], twistor theory is used to prove (n := dimM)

λ ≥ n

4(n− 1)
Scal

g
min +

n(n− 5)

8(n− 3)2
‖T ‖2 + n(4− n)

4(n− 3)2
max(µ2

1, . . . , µ
2
k) =: βtw.

This estimate has the advantage that it yields the classical Riemannian

estimate by Friedrich from [14] if T = 0.

Remark 2.2. It is interesting to ask what the ‘extreme’ case would be for our

new eigenvalue estimate (Corollary 2.1). If there is only parallel distribution,

T = T1 (i. e., k = 1 and n1 = dimM), the condition of split holonomy requires

T = 0 (and in particular, ∇T = 0 is trivially fulfilled). The estimate does then

coincide with Friedrich’ estimate [14], i.e., it is the best possible one.

3. Examples

Several examples will show that the assumption of split holonomy occurs

quite naturally in the study of G structures on manifolds.

Example 3.1. The twistor spaces of the only 4-dimensional compact self-

dual Einstein manifolds S4 and CP2 are the 6-dimensional manifolds CP3 and

F (1, 2) = U(3)/U(1) × U(1) × U(1), the manifold of flags l ⊂ v in C3 such

that dim l = 1 and dim v = 2. It is well-known that they carry two Einstein

metrics; one is Kähler (on CP3, this is exactly the Fubini-Study metric), the

other is nearly Kähler. We shall henceforth be interested in their nearly Kähler

structure. The characteristic connection∇ for nearly Kähler manifolds was first

considered by Gray in [18] and, in this particular case, happens to coincide with

the Chern connection (see the review [17] for general hermitian connections

and [16] for the general description of characteristic connections on almost
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hermitian manifolds). By a theorem of Kirichenko ([8], [22]), the torsion T

of ∇ is parallel, ∇T = 0, which is the first of the conditions needed for split

holonomy. In [11], it was proved that the only complete, 6-dimensional, non-

Kähler nearly Kähler manifolds such that the characteristic connection has

reduced holonomy are exactly CP3 and F (1, 2) (as Riemannian manifolds, both

are of course irreducible). For computational details on these very interesting

spaces, we refer to [9, Section 5.4]. In fact, one checks that in both cases, the

holonomy of ∇ splits the tangent space in three two-dimensional subbundles

T 2
i (the upper index indicates the dimension)

TM = T 2
1 ⊕ T 2

2 ⊕ T 2
3 , M = CP

3 or F (1, 2).

The general identities for nearly Kähler manifolds imply that Scalg = 30,

‖T ‖2 = 4 and T has the eigenvalues µ = 0 and µ = ±2‖T ‖. Furthermore,

there exist two Riemannian Killing spinors ϕ± that satisfy /Dϕ± = ∓‖T ‖ϕ±

[15]. To fix the ideas, in the notations of [9, Section 5.4 a)] for M = F (1, 2):

T1 = 〈e1, e2〉, T2 = 〈e3, e4〉, T3 = 〈e5, e6〉, the almost complex structure and

the torsion T of the characteristic connection ∇ are

Ω = e12 − e34 + e56, T = e245 + e146 − e236 + e135.

Here and in the sequel, we abbreviate exterior products ei ∧ ej ∧ · · · as eij···.

Thus, we are indeed in the situation of split holonomy as defined in Definition

2.1, and the eigenvalue estimate from Corollary 2.1 takes in this situation the

value

λ ≥ 2

4(2− 1)
Scalg +

2

8(2− 1)
‖T ‖2 − 1 + 2

4(2− 1)
max(0, 4‖T ‖2) = 4 =: βsplit.

Thus, one sees that our estimate is optimal in this situation, since the two

Killing spinors realize this lower bound. However, the result could also have

been obtained directly from [4], since the bound βsplit coincides with the uni-

versal eigenvalue estimate βuniv (see Remark 2.1). This is due to the deeper

fact that the two Killing spinors are in fact ∇-parallel.

Example 3.2. In [27], the author classifies 6-dimensional almost hermitian

manifolds with parallel torsion by discussing the possible holonomy groups of

the characteristic connection (denoted by ∇c in this paper) and the normal

form of the torsion. One finds that there are many more examples of manifolds

with split holonomy – for example, all cases with Hol(∇c) ⊂ S1, T 2, of which

there are many interesting examples. However, it is not possible to test the

eigenvalue estimate from Corollary 2.1 explicitly, since the curvature is not

fixed by these data.

Example 3.3. The Stiefel manifolds

M5 = SO(4)/SO(2) and M7 = SO(5)/SO(3)

carry a normal homogeneous metric and a distinguished Sasaki structure; both

are described in detail in [3], Example 5.1 (parameter value t = 1/2 of the



1588 I. AGRICOLA AND H. KIM

metric) and Example 5.2 (parameter value t = 1 of the metric). Both are

well-known spaces in the investigation of Riemannian spin manifolds: besides

the metric that we are investigating, both carry an Einstein-Sasaki metric and,

therefore, they admit two Riemannian Killing spinors ([14] for M5, [20] for

M7). The characteristic connection ∇ turns out to be the canonical connec-

tion of the underlying homogeneous space, hence the holonomy representation

coincides with the isotropy representation (see [24]) and the torsion is auto-

matically parallel (the space is naturally reductive). The tangent bundle splits

into (again, the upper index denotes the dimension)

TM5 = T 2
1 ⊕ T 2

2 ⊕ T 1
3 , TM7 = T 3

1 ⊕ T 3
2 ⊕ T 1

3 .

The Sasaki direction corresponds in both cases to the one-dimensional bundle.

With respect to a consecutive numbering of vectors of an orthonormal basis

(this coincides with the numbering from [3]), the torsion is

TM5 = −(e135 + e245), TM7 = −(e147 + e257 + e367),

so one sees that again, the manifold is spin and of split holonomy. There are

two spinors that are constant under the lift of the isotropy representation, thus

they define global sections and they are ∇-parallel with Dirac eigenvalue λ = 1.

One easily checks with the geometric data given in [3] that this is equal to the

bound given by all three known eigenvalue bounds,

1 = βsplit = βuniv = βtw.

This shows that our bound is, in this situation, again optimal. We suspect that

these examples can be generalized to the Tanno deformation of any Einstein-

Sasaki manifold: they have parallel torsion and a natural splitting of the tan-

gent bundle such that the torsion is of split type, but it seems hard to prove in

general that these subbundles are indeed holonomy invariant. A description of

the Tanno deformation of an Einstein-Sasaki manifold and of its characteristic

connection may be found in [10].
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