• Title/Summary/Keyword: Digital PLL

Search Result 194, Processing Time 0.024 seconds

Q Factor Measurement System for a ATS Coil Using Digital Phase Locked Loop (디지털 PLL을 이용한 ATS 지상자 코일 Q 측정장치 개발)

  • 김기택;임기택;최정용;김봉택
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.368-375
    • /
    • 2000
  • For safety reason ATS(Automatic Train Stop) system is being used, which is a kind of communication system with a feedback amplifier and a transformer on the train and wayside coils. The coils are highly resonant LC circuits, also have very high Q(Quality) factors. The Q factors of wayside ATS coils are to be maintained high enough for the amplifier to operate reliably. In this paper a novel Q measurement system is proposed. The system measures the resonant frequency and the bandwidth of the ATS coils, by controlling the phase difference between the transformer and the coil using digital PLL(Phase Locked Loop). The overall configuration and algorithms of the proposed system and the digital PLL control schemes are presented in details. The experimental waveforms are shown to verify the system performances.

  • PDF

A Multiple Gain Controlled Digital Phase and Frequency Detector for Fast Lock-Time (빠른 Lock-Time을 위한 다중 이득 제어 디지털 위상 주파수 검출기)

  • Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This paper presents a multiple gain controlled digital phase and frequency detector with a fast lock-time. Lock-time of the digital PLL can be significantly reduced by applying proposed adaptive gain control technique. A loop gain of the proposed digital PLL is controlled by three conditions that are very large phase difference between reference and feedback signal, small phase difference and before lock-state, and after lock-state. The simulation result shows that lock-time of the proposed multiple gain controlled digital PLL is 100 times faster than that of the conventional structure with unit gain mode.

Analysis of Phase Noise in Frequency Synthesizer with DDS Driven PLL Architecture (DDS Driven PLL 구조 주파수 합성기의 위상 잡음 분석)

  • Kwon, Kun-Sup;Lee, Sung-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1272-1280
    • /
    • 2008
  • In this paper, we have proposed a phase noise model of fast frequency hopping synthesizer with DDS Driven PLL architecture. To accurately model the phase noise contribution of noise sources in frequency hopping synthesizer, they were investigated using model of digital divider for PLL, DAC for DDS and Leeson's model for reference oscillator and VCO. Especially it was proposed that the noise component of low pass filter was considered together with the phase noise of VCO. Under assuming linear operation of a phase locked loop, the phase noise transfer functions from noise sources to the output of synthesizer was analyzed by superposition theory. The proposed phase noise prediction model was evaluated and its results were compared with measured data.

Jitter Tolerances in Digital Transmission Equipment (디지틀 전송 장치의 지터 허용치)

  • Ko, Jeong-Hoon;Lee, Man-Seop;Park, Moon-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.14-21
    • /
    • 1989
  • In the digital transmission equipment, the input jitter tolerance is a function of input timing recovery circuit characteristics. Especially, in the asynchronous multiplexers, it is also a function of the frame format, the buffer sizes in the synchronizer and desynchronizer, the PLL transfer function, and operating range of VCO in PLL In this paper, a new algorithm for calculating the jitter tolerance of the saynchronous digital transmission equipment is presented. With the new algorithm, we analyzed how the above factors limit the jitter tolerance in the equipment. We also measured the input jitter tolerance for a 45M-140M multiplexing equipment, whose results show the same trend with calculated tolerance.

  • PDF

Improvement of Phase Noise in Frequency Synthesizer with Dual PLL (이중 PLL 구조 주파수 합성기의 위상 잡음 개선)

  • Kim, Jung-Hoon;Park, Beom-Jun;Kim, Jee-Heung;Lee, Kyu-Song
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.903-911
    • /
    • 2014
  • This paper proposes a high speed frequency synthesizer with dual phase-locked loop(PLL) structure to improve phase noise level and shape in a wideband receiver. To reduce phase noise and fractional spur, a output frequency of $1^{st}$ PLL used as reference frequency of $2^{nd}$ PLL is changed. The frequency synthesizer has been designed with 1 Hz frequency resolution using digital NCO in 6.5~8.5 GHz wide spectrum. The measured results of the fabricated frequency synthesizer show that the output power is about -3 dBm, the maximum lock-in time and phase noise are within 60 us and -95 dBc/Hz at 10 kHz offset, respectively.

Phase Noise Analysis of 2.4 GHz PLL using SPD (SPD를 이용한 2.4 GHz PLL의 위상잡음 분석)

  • Chae, Myeoung-ho;Kim, Jee-heung;Park, Beom-jun;Lee, Kyu-song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • In this paper, phase noise analysis result for 2.4 GHz PLL(phase locked loop) using SPD(sample phase detector) is proposed. It can be used for high performance frequency synthesizer's LO(local oscillator) to extend output frequency range or for LO of offset PLL to reduce a division rate or for clock signal of DDS(direct digital synthesizer). Before manufacturing, theoretical estimation of PLL's phase noise performance should be performed. In order to calculate phase noise of PLL using SPD, Leeson model is used for modeling phase noise of VCO(voltage controlled oscillator) and OCXO(ovened crystal oscillator). After theoretically analyzing phase noise of PLL, optimized loop filter bandwidth was determined. And then, phase noise of designed loop filter was calculated to find suitable OP-Amp. Also, the calculated result of phase noise was compared with the measured one. The measured phase noise of PLL was -130 dBc/Hz @ 10 kHz.

A Dual Charge Pump PLL-based Clock Generator with Power Down Schemes for Low Power Systems (저 전력 시스템을 위한 파워다운 구조를 가지는 이중 전하 펌프 PLL 기반 클록 발생기)

  • Ha, Jong-Chan;Hwang, Tae-Jin;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.9-16
    • /
    • 2005
  • This paper proposes a programmable PLL (phase locked loop) based clock generator supporting a wide-range-frequency input and output for high performance and low power SoC with multiple clock frequencies domains. The propose system reduces the locking time and obtains a wide range operation frequency by using a dual-charge pumps scheme. For low power operation of a chip, the locking processing circuits of the proposed PLL doesn't be working in the standby mode but the locking data are retained by the DAC. Also, a tracking ADC is designed for the fast relocking operation after stand-by mode exit. The programmable output frequency selection's circuit are designed for supporting a optimized DFS operation according to job tasks. The proposed PLL-based clock system has a relock time range of $0.85{\mu}sec{\sim}1.3{\mu}sec$($24\~26$cycle) with 2.3V power supply, which is fabricated on $0.35{\mu}m$ CMOS Process. At power-down mode, PLL power saves more than $95\%$ of locking mode. Also, the PLL using programmable divider has a wide locking range ($81MHz\~556MHz$) for various clock domains on a multiple IPs system.

The Design of Robust DSC-PLL under Distorted Grid Voltage Contained Unbalance on Frequency Variation (주파수 변동시 불평형 전압에 강인한 DSC-PLL 설계 연구)

  • Lee, Jae Do;Cha, Han Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1447-1454
    • /
    • 2018
  • In this paper, the design of robust DSC-PLL(Delayed Signal Cancellation Phase Locked Loop) is proposed for coping with frequency variation. This method shows significant performance for detection of fundamental positive sequence component voltage when the grid voltage is polluted by grid unbalance and frequency variation. The feedback frequency estimation of DSC-PLL is tracking the drift in the phase by unbalance and frequency variation. The robust DSC PLL is to present the analysis on method and performance under frequency variations. These compensation algorithms can correct for discrepancies of changing the frequency within maximum 193[ms] and improve traditional DSC-PLL. Linear interpolation method is adopted to reduce the discretized errors in the digital implementation of the PLL. For verification of robust characteristic, PLL methods are implemented on FPGA with a discrete fixed point based. The proposed method is validated by both Matlab/Simulink and experimental results based on FPGA(XC7Z030).

Design of a High-performance High-pass Generalized Integrator Based Single-phase PLL

  • Kulkarni, Abhijit;John, Vinod
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1231-1243
    • /
    • 2017
  • Grid-interactive power converters are normally synchronized with the grid using phase-locked loops (PLLs). The performance of the PLLs is affected by the non-ideal conditions in the sensed grid voltage such as harmonics, frequency deviations and the dc offsets in single-phase systems. In this paper, a single-phase PLL is presented to mitigate the effects of these non-idealities. This PLL is based on the popular second order generalized integrator (SOGI) structure. The SOGI structure is modified to eliminate the effects of input dc offsets. The resulting SOGI structure has a high-pass filtering property. Hence, this PLL is termed as a high-pass generalized integrator based PLL (HGI-PLL). It has fixed parameters which reduces the implementation complexity and aids in the implementation in low-end digital controllers. The HGI-PLL is shown to have the lowest resource utilization among the SOGI based PLLs with dc cancelling capability. Systematic design methods are evolved leading to a design that limits the unit vector THD to within 1% for given non-ideal input conditions in terms of frequency deviation and harmonic distortion. The proposed designs achieve the fastest transient response. The performance of this PLL has been verified experimentally. The results agree with the theoretical prediction.

Mobile Application을 위한 All Digital Phase-Locked Loop 연구 동향

  • Sin, Jae-Uk;Sin, Hyeon-Cheol
    • Information and Communications Magazine
    • /
    • v.28 no.11
    • /
    • pp.9-15
    • /
    • 2011
  • CMOS 집적회로기술의 발달로 인해 디지털회로는 속도향상 소모전력 감소로 성능이 매우 많이 향상되었지만, Analog/RF 회로는 동작전압감소, 공정변화심화 등으로 인해 심각한 성능저하가 나타나고 있다. 이에 기존의 전하펌프 기반 아날로그 PLL에 대한 대안으로 All Digital PLL(ADPLL)이 개발되고 이미 상용제품에 적용되고 있다. 하지만 그 성능은 데이터변환 회로인 TDC와 DCO의 제한된 해상도로 인해 개선이 많이 필요하다. 이 두 회로는 ADPLL의 성능에 가장 큰 영향을 미치므로 본 논문에서는 지금까지 발표된 TDC와 DCO 구현사례를 중심으로 ADPLL의 연구개발동향을 살펴보고자 한다.