• Title/Summary/Keyword: Dendritic cells (DCs)

Search Result 137, Processing Time 0.04 seconds

Deoxypodophyllotoxin Induces a Th1 Response and Enhances the Antitumor Efficacy of a Dendritic Cell-based Vaccine

  • Lee, Jun-Sik;Kim, Dae-Hyun;Lee, Chang-Min;Ha, Tae-Kwun;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Son, Kwang-Hee;Jung, In-Duk;Lee, Eun-Kyung;Shin, Yong-Kyoo;Ahn, Soon-Cheol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Background: Dendritic cell (DC)-based vaccines are currently being evaluated as a novel strategy for tumor vaccination and immunotherapy. However, inducing long-term regression in established tumor-implanted mice is difficult. Here, we show that deoxypohophyllotoxin (DPT) induces maturation and activation of bone marrow-derived DCs via Toll-like receptor (TLR) 4 activation of MAPK and NF-${\kappa}B$. Methods: The phenotypic and functional maturation of DPT-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. DPT-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity and for tumor regression against melanoma. Results: DPT promoted the activation of $CD8^+$ T cells and the Th1 immune response by inducing IL-12 production in DCs. In a B16F10 melanoma-implanted mouse model, we demonstrated that DPT-treated DCs (DPT-DCs) enhance immune priming and regression of an established tumor in vivo. Furthermore, migration of DPT-DCs to the draining lymph nodes was induced via CCR7 upregulation. Mice that received DPT-DCs displayed enhanced antitumor therapeutic efficacy, which was associated with increased IFN-${\gamma}$ production and induction of cytotoxic T lymphocyte activity. Conclusion: These findings strongly suggest that the adjuvant effect of DPT in DC vaccination is associated with the polarization of T effector cells toward a Th1 phenotype and provides a potential therapeutic antitumor immunity.

Immunocell Therapy for Lung Cancer: Dendritic Cell Based Adjuvant Therapy in Mouse Lung Cancer Model (폐암의 면역세포 치료: 동물 모델에서 수지상 세포를 이용한 Adjuvant Therapy 가능성 연구)

  • Lee, Seog-Jae;Kim, Myung-Joo;In, So-Hee;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • Background: The anti-tumor therapeutic effect of autologous tumor cell lysate pulseddendritic cells (DCs) was studied for non-immunogenic and immune suppressive lung cancer model. To test the possibility as an adjuvant therapy, minimal residual disease model was considered in mouse in vivo experiments. Methods: Syngeneic 3LL lung cancer cells were inoculated intravenously into the C57BL/6 mouse. Autologous tumor cell (3LL) or allogeneic leukemia cell (WEHI-3) lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, tumor formation in the lung and the tumor-specific systemic immunity were observed. Tumor-specific lymphocyte proliferation and the IFN-${\gamma}$ secretion were analyzed for the immune monitoring. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with tumor cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor formation was suppressed in 3LL tumor cell lysate pulsed-DC treated group, while 3LL-specific immune stimulation was minimum. WEHI-3-specific immune stimulation occurred in WEHI-3 lysate-pulsed DC treated group, which had no correlation with tumor regression. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs as an adjuvant therapy for minimal residual disease state of lung cancer. The significance of immune modulation in DC therapy including the possible involvement of NK cell as well as antigen-specific cytotoxic T cell activity induction was discussed.

Cytokine Reporter Mouse System for Screening Novel IL12/23 p40-inducing Compounds

  • Im, Wooseok;Kim, Hyojeong;Yun, Daesun;Seo, Sung-Yum;Park, Se-Ho;Locksley, Richard M.;Hong, Seokmann
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.288-296
    • /
    • 2005
  • Cytokines interleukin (IL) 12 and 23 play critical roles in linking innate and adaptive immune responses. They are members of heterodimeric cytokines, sharing a subunit p40. Although IL12/23 p40 is mainly induced in macrophages and dendritic cells (DCs) after stimulation with microbial Toll-like receptor ligands, methods to monitor the cells that produce IL12/23 p40 in vivo are limited. Recently, the mouse model to track p40-expressing cells with fluorescent reporter, yellow fluorescent protein, has been developed. Macrophages and DCs from these mice faithfully reported p40 induction using the fluorescent marker. Here we took advantage of these reporter mice to screen bio-compounds for p40-inducing activity. After screening hundreds of compounds, we found several extracts inducing IL12/23 p40 gene expression. Treatment of DCs with these extracts induced the expression of MHC class II and co-stimulatory molecules, which implies that these might be useful as adjuvants. Next, the in vivo target immune cells of candidate compounds were examined. The reporter system can be useful to identify cells producing IL12 or IL23 in vivo as well as in vitro. Thus, our cytokine reporter system proved to be a valuable reagent for screening for immunostimulatory molecules and identification of target cells in vivo.

Vitamin C Up-regulates Expression of CD80, CD86 and MHC Class II on Dendritic Cell Line, DC-1 Via the Activation of p38 MAPK

  • Kim, Hyung Woo;Cho, Su In;Bae, Seyeon;Kim, Hyemin;Kim, Yejin;Hwang, Young-Il;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.277-283
    • /
    • 2012
  • Vitamin C is an essential water-soluble nutrient which primarily exerts its effect on host defense mechanisms and immune homeostasis, but the mechanism related to immune-potentiation is poorly understood. Since dendritic cells (DCs) are known as a potent antigen presenting cell (APC) that could enhance the antigen specific immune responses, we investigate the effects of vitamin C on activation of DCs and its related mechanism by using dendritic cell lines, DC-1. First, we found that there was no damage on DC-1 by 2.5 mM of vitamin C. In the presence of vitamin C, the expression of CD80, CD86, and MHC molecules was increased, but it was decreased by the pre-treatment of SB203580, p38 MAPK-specific inhibitor. We confirmed the phosphorylation of p38 MAPK was increased by the treatment of vitamin C. Taken together, these results suggest that vitamin C could enhance the activity of dendritic cells via the up-regulation of the expression of CD80, CD86, and MHC molecules and the activation of p38 MAPK is related to this process.

Helper T Cell Polarizing Through Dendritic Cells (수지상세포를 통한 조력 T세포의 분화 - 알레르기 질환을 중심으로 -)

  • Han, Manyong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • In the last few years, a spectrum of dendritic cells(DCs), including toll like receptors(TLRs), might play a critical role in regulating allergy and asthma. DC plays a central role in initiating immune responses, linking innate and adaptive responses to pathogen. Human peripheral blood has three non-overlapping dendritic subset that expressed various 11 TLRs. These dendritic subsets and TLR contribute significant polarizing influences on T helper differentiation, but how this comes about is less clear. A better understanding of DC immunobiology may lead to the comprehension of allergy pathophysiology to prevent early stage allergic march.

In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells

  • Dong-Ha Lee;Eun-bee Lee;Jong-pil Seo ;Eun-Ju Ko
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.37.1-37.14
    • /
    • 2023
  • Background: Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. Objectives: The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). Methods: The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. Results: The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. Conclusions: The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.

Effect of Some Herbal Plant Extracts on the Activation of Dendritic Cells (일부 한약재의 수지상세포 활성화 효과)

  • Kim, Do-Soon;Park, Jung-Eun;Cho, Hyun-Wook;Joo, Woo-Hong;Yee, Sung-Tae
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.427-434
    • /
    • 2007
  • Dendritic cells (DCs) play a pivotal roles in the initiation of T cell-mediated immune responses, making them an attractive in immuno vaccines. Angelica gigas and Cnidium officinale were a medicinal herb widely used in Asian countries. In this study, we examined the effects of A. gigas and C. officinale extracts on the DCs functional maturation and phono-type. Immature DCs were cultured in the presence of GM-CSF and IL-4, and the generated immature DCs were stimulated with OVA in the presence or absence A. gigas and C. officinale extracts, respectively, for 24 hours. The antigen-presenting capacity of A. gigas and C. officinale extracts-treated DCs as analyzed by $CD4^+$ helper T cell clone (OVA-specific) proliferation and cytokines (IL-2 and $IFN-{\gamma}$) production were significantly increased. But A. gigas and C. officinale extracts were not directly effected $CD4^+$ helper T cell clone function. Also, the expression of surface co-stimulatory molecules, including major histocompatibility complex (MHC) class II, CD86 and CD11c, is increased on DCs that were stimulated with A. gigas and C. officinale extracts. These results indicate the immunomodulatory properties of A. gigas and C. officinale extracts, which might be medical supplies or health foods.

Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity

  • Lee, Moon Hee;Jang, Jong-Hwa;Yoon, Gun Young;Lee, Seung Jun;Lee, Min-Goo;Kang, Tae Heung;Han, Hee Dong;Kim, Hyuk Soon;Choi, Wahn Soo;Park, Won Sun;Park, Yeong-Min;Jung, In Duk
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.263-268
    • /
    • 2017
  • ${\beta}$-Agarase cleaves the ${\beta}$-1,4 linkages of agar to produce neoagarooligosaccharides (NAO), which are associated with various physiological functions. However, the immunological functions of NAO are still unclear. In this study, we demonstrated that ${\beta}$-agarase DagA-produced neoagarohexaose (DP6), an NAO product, promoted the maturation of dendritic cells (DCs) by Toll-like receptor 4 (TLR4). DP6 directly and indirectly enhanced the activation of natural killer (NK) cells in a TLR4-dependent manner in vitro and in vivo. Finally, the antitumor activity of DP6 against B16F1 melanoma cells was inhibited in NK cell-depletion systems by using NK-cell depleting antibodies in vivo. Collectively, the results indicated that DP6 augments antitumor immunity against B16F1 melanoma cells via the activation of DC-mediated NK cells in a TLR4-dependent manner. Thus, DP6 is a potential candidate adjuvant that acts as an immune cell modulator for the treatment of melanoma.

Sarijang Enhances Maturation of Murine Bone Marrow-Derived Dendritic Cells (사리장 처리에 의한 수지상세포의 성숙 유도)

  • Jin, Cheng-Yun;Han, Min-Ho;Park, Cheol;Hwang, Hye-Jin;Choi, Eun-A;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1789-1794
    • /
    • 2011
  • Dendritic cells (DCs) are professional antigen-presenting cells playing key roles in immune sentinels as initiators of T-cell responses against microbial pathogens and tumors. Sarijang, a folk sauce containing extracts of Rhynchosia nulubilis, Ulmus davidiana roots, Allium sativum, and Rhus Verniaiflura bark, has been used as a nonspecific immunostimulant for cancer patients. However, little is known about its immunomodulating effects or their mechanisms. In this study, we investigated whether sarijang induces phenotypic and functional maturation of DCs. For this study, murine bone marrow-derived myeloid DCs were cultured in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF), and the generated immature DCs were stimulated with sarijang or lipopolysaccharide (LPS). Our data indicated that sarijang significantly enhanced the expression of co-stimulatory molecules (CD80 and CD86) as well as major histocompatibility complex (MHC) II, as did LPS. The results provide new insight into the immunopharmacology of sarijang and suggest a novel approach to the manipulation of DC for therapeutic application.

Enhancement of Antigen Presentation Capability of Dendritic Cells and Activation of Macrophages by the Components of Bifidobacterium pseudocatenulatum SPM 1204

  • HAN Shinha;CHO Kyunghae;LEE Chong-Kil;SONG Youngcheon;PARK So Hee;HA Nam-Joo;KIM Kyungjae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.174-180
    • /
    • 2005
  • Antigen presenting cells (APCs), dendritic cells (DCs) and macrophages, playa critical role not only in the initiation of immune responses, but also in the induction of immune tolerance. In an effort to regulate immune responses through the modulation of APC function, we searched for and characterized APC function modulators from natural products. Bifidobacterium pseudocatenulatum SPM1204 (SPM1204) isolated from feces of healthy Korean in the age of 20s was used in this experiment. DCs and macrophages were cultured in the presence of supernatants of SPM 1204 and then examined for their activities for the presentation exogenous antigen in association with major histocompatibility complexes (MHC) and macrophage activation. SPM1204 increased class I MHC-restricted presentation of exogenous antigen (cross-presentation) in a DC cell line, DC2.4 cells. The RAW 264.7 cell line was used to test the nonspecific effect of immune reinforcement of SPM1204 as a source of biological regulating modulator for the macrophage activation, include nitric oxide (NO) production and cytokine production. Results showed that the production of NO, tumor necrosis factor (TNF)-$\alpha$, interleukin 1 (IL-1)-$\beta$ and morphological changes in macrophages were largely affected by SPM1204 in a dose-dependent manner. Our results demonstrated that SPM1204 promote cross-presentation of dendritic cells as well as the induction of NO, TNF-$\alpha$ production, and activation of macrophage.