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ABSTRACT

Background: Toll-like receptor (TLR) agonists have been used as adjuvants to modulate 
immune responses in both animals and humans.
Objectives: The objective of this study was to evaluate the combined effects of the TLR 4 
agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic 
acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived 
dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs).
Methods: The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses 
were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon 
gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha 
(TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 
(MCP-1) was determined using real-time polymerase chain reaction.
Results: The combination of MPL and Poly I:C significantly upregulated immunomodulatory 
responses in equine cells/ without cytotoxicity. The combination induced greater mRNA 
expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation 
alone in PBMCs. In addition, the combination induced significantly higher mRNA expression 
of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to 
stimulation with a single TLR agonist.
Conclusions: The combination of MPL and Poly I:C can be used as a potential adjuvant 
candidate for vaccines to aid in preventing infectious diseases in horses.

Keywords: Toll-Like Receptors; peripheral blood mononuclear cell; dendritic cells;  
bone marrow stromal cell; immunomodulation

INTRODUCTION

In animal vaccines, an immunostimulatory material known as ‘adjuvant’ is included in the 
vaccine to improve its immunogenicity and enhance immune response. Various types of 
adjuvants are available in vaccine systems, such as pathogen-associated molecular patterns 
(PAMPs) that target pattern recognition receptors (PRRs). Among PAMPs, Toll-like receptor 
(TLR) agonists have often been used as adjuvants because of their ability to modulate innate 
immune response and increase the magnitude of protective adaptive immunity [1,2].
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TLR agonists are categorized into two types based on the location of target receptors: 
receptors expressed on the cell surface that respond to the extracellular components of 
pathogens (TLR 1, 2, 4, 5, and 6) and endosomal receptors that recognize intracellular 
components of the pathogens (TLR 3, 7, 8, and 9) [3]. To date, more than five types of TLR 
agonists have been tested in vaccines, and these agonists have elicited enhanced immune 
responses in in vitro and in vivo experiments [1,3-6]. Considering the improved immune 
response in mouse models, experiments using different animal models have been conducted 
to verify the effectiveness of various TLR agonists.

In contrast to mouse models that have genetically identical traits and result in statistically 
significant data, in vivo experiments using livestock have limitations because of their genetic 
differences and laborious factors. To overcome these shortcomings, alternative in vitro 
experimental methods have been applied using animal cells obtained from blood or bone marrow.

In previous research, a variety of TLR agonists have been tested in many equine cells, including 
cytosine-phosphate-guanosine oligodeoxynucleotides and monophosphoryl lipid A (MPL) in 
peripheral blood mononuclear cells (PBMCs), polyinosinic-polycytidylic acid (Poly I:C), and 
lipopolysaccharide (LPS) in bone marrow-derived mesenchymal stromal cells (BM-MSCs) [7-11]. 
However, little information is available on the simultaneous use of multiple TLR agonists in 
equine cells. Recently, a strategy to apply multiple adjuvant components to mouse immune cells 
was examined to evaluate the possibility that combined adjuvants can induce synergistic effects 
on the immune environment, such as improved recruitment of immune cells, enhancement of 
antigen presentation and uptake by antigen-presenting cells (APC), or increased expression of 
costimulatory cytokines that stimulate T cell proliferation and differentiation [12-14]. However, 
the effects of combined adjuvants on immune cells of different species, including equine 
models, are rarely evaluated. Therefore, in this study, we used the TLR 4 agonist MPL and TLR 
3 agonist Poly I:C simultaneously in equine PBMCs, monocyte-derived dendritic cells (MoDCs), 
and BM-MSCs to verify their combined effects in horse in vitro models and compared the 
immune response to those treated with MPL or Poly I:C alone.

MATERIALS AND METHODS

Animals
Five mares of different breeds (mixed breed, n = 3; Shetland pony, n = 1; Thoroughbred, n = 1) 
and one stallion (Selle Francais, n = 1) were used in this study. The horses were between 5 and 
24 years old. PBMCs, MoDCs, and BM-MSCs were collected from three mixed-breed horses. 
Blood from the Thoroughbred, Shetland pony, and Selle Francais were used for the allogenic 
mixed lymphocyte reaction. Before conducting the experiment, the physical condition of 
the horses was clinically examined. All the experiments were performed according to the 
guidelines of Jeju National University (JNU) and approved by the Institutional Animal Care 
and Use Committee (IACUC) protocol (protocol number 2021-0035).

Reagents
Poly I:C and MPL were purchased from InvivoGen (USA) and 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT), sodium dodecyl sulfate (SDS), fluorescein 
isothiocyanate (FITC)-dextran, and 5(6)-carboxyfluorescein diacetate N-succinimidyl ester 
(CFSE) were obtained from Sigma-Aldrich (USA). All the reagents were prepared according to 
the manufacturer’s instructions.
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Preparation, culture, and stimulation of PBMCs
Fifty milliliter of blood samples were collected from the jugular veins of three mixed breed 
horses using heparinized tubes. PBMCs were isolated by density centrifugation (400 g, 
30 min, 4°C) using Ficoll Histopaque-1077 (Sigma-Aldrich) and washed twice in sterile 
phosphate-buffered saline (PBS). PBMCs (5 × 106 cells/well) from each horse were seeded into 
a 6-well plate and cultured in complete media consisting of Roswell Park Memorial Institute 
(RPMI) 1640 medium (Sigma-Aldrich) supplemented with 10% complement-inactivated fetal 
bovine serum (FBS) and 1× antibiotic-antimycotic (Gibco BRL; Thermo Fisher Scientific, 
USA). PBMCs were stimulated with MPL (0.25 μg/mL), Poly I:C (2.5 μg/mL), or both for 18 h 
at 37°C. PBMCs incubated with complete media alone were used as negative controls. After 
incubation, all the cells were harvested using a cell scraper and transferred to a 1.7 mL tube 
for RNA extraction.

Cell viability assessment
An MTT assay was performed to evaluate the viability of PBMCs stimulated with TLR 
agonists. The assay was performed according to a previously described protocol [15]. Briefly, 
PBMCs from three mixed breed horses were seeded in a 96-well plate (4 × 105 cells/well) with 
200 μL of complete medium. The cells were incubated with Poly I:C at concentrations of 
0.625, 1.25, 2.5, 5, and 10 μg/mL and MPL at concentrations of 0.0625, 0.125, 0.25, 0.5, and 
1 μg/mL. All the cells were incubated for 2 days at 37°C. After incubation, 10 μL of 10 mg/
mL MTT solution was added to each well and incubated for 4 h. Next, 100 μL of 10% SDS 
solution was added to each well and incubated for 2 h. The optical density of each well was 
measured using a microplate reader at 570 nm.

Preparation, culture, and stimulation of MoDCs
MoDCs were generated according to a previously described protocol with minor 
modifications [16]. After seeding PBMCs into a 6-well plate, as described above, the cells 
were incubated for 2 h at 37°C. Non-adherent cells and culture medium were removed 
after incubation. Fresh complete medium containing 10 ng/mL of recombinant equine 
interleukin-4 (eq IL-4) (Abcam, UK) and 50 ng/mL of recombinant equine granulocyte-
macrophage colony stimulating factor (eq GM-CSF) (Abcam) was added to the adherent cells, 
which were incubated at 37°C for 6 days to stimulate MoDC generation. Floating cells were 
removed, and fresh complete media with eq IL-4 and eq GM-CSF was refilled every 2 days. On 
day 6, the generated MoDCs were stimulated with TLR agonists and incubated at 37°C for 18 
h. After incubation, all the cells were harvested and prepared for RNA extraction.

Evaluation of antigen uptake capacity of MoDCs
An endocytosis assay using Fluorescein isothiocyanate (FITC)-dextran was performed to 
evaluate the antigen uptake capacity of MoDCs stimulated with TLR agonists. The assay was 
performed as described previously [17]. Briefly, MoDCs were treated with TLR agonists for 
18 h and harvested using cell scrapers. The cells were resuspended in 1 mL of fresh complete 
medium at a density of 5 × 105 cells/sample. Ten microliters of FITC-dextran solution was 
added to each sample and incubated at 4°C or 37°C for 1 h. After incubation, all the cells 
were washed twice with ice-cold PBS and resuspended in 400 μL flow cytometry staining 
(FACS) solution containing 0.1% sodium azide, 5% FBS, and 1% paraformaldehyde, before 
analysis. After staining, the cells were analyzed using the BD LSR Fortessa and BD FACS 
Diva program (BD Biosciences). Data analysis was performed using FlowJo software (FlowJo, 
LLC, USA).
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Allogeneic mixed lymphocyte reaction assay
To evaluate the ability of MoDCs to induce non-specific T cell proliferation, an allogeneic 
mixed lymphocyte reaction assay was conducted using three different horse species 
(Thoroughbred, Shetland Pony, and Selle Francais). Allogenic naive lymphocytes were 
collected from PBMCs and stained with 2 μm of carboxyfluorescein succinimidyl ester (CFSE) 
(Sigma-Aldrich) at 37°C for 10 min. Subsequently, CFSE-labeled lymphocytes were washed 
with complete media, diluted to a concentration of 2 × 106 cells/mL, and co-cultured with 
control or TLR agonist pretreated MoDCs in 96 U-bottom well plates at 37°C for 5 days. The 
ratio of MoDCs to lymphocyte was 1:20. After 5 days of co-culture, all the cells were collected 
and resuspended in 400 μL FACS buffer consisting of PBS and 2% FBS. To exclude dead cells, 
live/dead AmCyan (LIVE/DEAD Fixable Aqua Dead Cell Stain Kit; Thermo Fisher Scientific) 
was added to each sample. The stained cells were analyzed with flow cytometry, and the 
results were analyzed using FlowJo software.

Preparation, culture, and stimulation of bone marrow-derived mesenchymal 
stromal cells
BM-MSCs were generated according to a previously described protocol [18]. Briefly, BM-
MSCs were isolated from the bone marrow blood samples collected from the sternum of 
three mixed breed horses and cryopreserved at passage 1. Before stimulation with TLR 
agonists, the cells were thawed and cultured at the end of passage 2. BM-MSCs (5 × 106 
cells/well) from each horse were seeded into a 6-well plate and cultured in complete media 
consisting of Dulbecco’s Modified Eagle Medium (DMEM)-1640 medium (Sigma-Aldrich) 
supplemented with 10% FBS and 100 IU penicillin + streptomycin (Gibco BRL; Thermo 
Fisher Scientific). BM-MSCs were stimulated with TLR agonists and incubated for 18 h at 
37°C. BM-MSCs incubated with complete media alone were used as negative controls. After 
incubation, the BM-MSCs were harvested and used for RNA extraction.

RNA extraction and complementary DNA preparation
Total RNA was prepared from cultured PBMCs, MoDCs, and BM-MSCs using an RNA 
extraction kit (iNtRON Biotechnology Inc., Korea) according to a previously described 
protocol [19]. The concentration and purity of each RNA sample was determined using a 
DS-11 spectrophotometer (DeNovix Inc., Wilmington, DE, USA). For complementary DNA 
(cDNA) preparation, 1 μg of total RNA was used to synthesize cDNA using a cDNA synthesis 
kit (iNtRON Biotechnology Inc.) following the manufacturer’s protocol. The concentration 
and quality of the synthesized cDNA were evaluated as described above and diluted to an 
appropriate concentration for subsequent polymerase chain reaction (PCR). After synthesis, 
all the cDNA samples were stored at −80°C until use.

Quantification of cytokine gene expression using real-time PCR
Real-time PCR was used to measure changes in the mRNA expression of interferon gamma 
(IFN-γ), IL-1β, IL-4, IL-6, IL-8, IL-12p40 tumor necrosis factor alpha (TNF-α), vascular 
endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1). 
Glyceraldehyde 3-phosphate dehydrogenase was used as an endogenous control. Primer 
information was obtained from previously published data [20,21]. Table 1 lists the primer 
sequences. The PCR reaction had a final volume of 20 μL and consisted of 10 μL real-time 
PCR master mix reagents (iNtRON Biotechnology Inc.), 1 μL of 10 μM forward and reverse 
primers, 1 μL cDNA, and 7 μL nuclease-free water. PCR was performed using a Thermal 
Cycler Dice Real-Time System II (Takara Bio Inc., Japan). All the samples were measured in 
triplicate. The thermal profile consisted of an initial hold at 95°C for 10 min, followed by 
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40 cycles of denaturation at 95°C for 15 s, annealing at 54.5–61°C for 30 s, and extension at 
70°C for 30 s, followed by a melting curve (60–95°C). The ΔΔCt method was used to quantify 
relative mRNA expression [22].

Statistical analysis
All the results are presented as mean ± SEM. Statistical significance was determined using 
one-way ANOVA followed by Tukey’s multiple comparison test. Statistical significance was 
set at p < 0.05. All data were analyzed using the Prism software (GraphPad Software, USA).

RESULTS

The combination treatment of TLR agonists did not affect the cell viability of 
equine PBMCs
Equine PBMCs were treated with MPL, Poly I:C, and a combination of MPL and Poly I:C, to 
evaluate the cytotoxicity of TLR agonists and determine the treatment dose. MPL did not 
exhibit cytotoxicity to equine PBMCs at concentrations between 0 and 1 μg/mL, compared 
to the control (Fig. 1A). Poly I:C did not show significant cytotoxicity to equine PBMCs at 
concentrations between 0 and 10 μg/mL (Fig. 1B). According to single treatment results, the 
MPL + Poly I:C ratio was 1:10. Cytotoxicity was not observed in the combination treatment, 
and highest cell viability was observed with the combination treatment of 0.25 μg/mL of MPL 
and 2.5 μg/mL of Poly I:C (Fig. 1C).

Pro-inflammatory cytokine and chemokine mRNA expression of equine 
PBMCs was induced by a combination of MPL and Poly I:C
To investigate the effects of TLR agonists on pro-inflammatory cytokine and chemokine 
production in PBMCs, equine PBMCs from three mixed breed horses were stimulated 
with MPL, Poly I:C, or their combination, followed by expression analysis of eight 
immunomodulatory genes using real-time PCR (Fig. 2). MPL treatment increased IFN-γ, 
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Table 1. Oligonucleotide primer sequence of target genes
Target gene Oligo Primer sequence
GAPDH Forward GGTGAAGGTCGGAGTAAACG

Reverse AATGAAGGGGTCATTGATGG
IFN-γ Forward CTATTACTGCCAGGCCGCGTT

Reverse TCCTCTTCCGCTTCCTCAGGTT
IL-1β Forward ACCATAAATCCCTGGTGCTG

Reverse CGTCCCACAAGACAGGTACA
IL-4 Forward CCGAAGAACACAGATGGAAAGGA

Reverse TCACAGTACAGCAGGTCCCGTTT
IL-6 Forward AGCAAGGAGGTACTGGCAGA

Reverse CCTTTTCACCCTTGAACTCG
IL-8 Forward CGCACTCCAAACCTTTCAAT

Reverse TCAAAAACGCCTGCACAATA
IL-12p40 Forward TGCTGTTCACAAGCTCAAGTATGA

Reverse GGGTGGGTCTGGTTTGATGA
TNF-α Forward GCCCAGACACTCAGATCATCTTC

Reverse CATTTGCACGCCCACTCA
VEGF Forward CAACGACGAGGGCCTAGAGT

Reverse CATCTCTCCTATGTGTGGCTTTG
MCP-1 Forward ATTGGCCAAGGAGATCTGTG

Reverse ATATCAGGGGGCATTTAGGG
GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; IFN-γ, interferon gamma; IL, interleukin; TNF-α, tumor 
necrosis factor alpha; VEGF, vascular endothelial growth factor; MCP-1, monocyte chemoattractant protein-1.



IL-6, and MCP-1 expressions, whereas treatment with Poly I:C alone could not induce any 
cytokine or chemokine mRNA expression. However, the MPL and Poly I:C combination 
induced significant mRNA expression of IFN-γ (p < 0.01) and IL-6 (p < 0.05) (Fig. 2A and B). 
The mean fold-changes in IL-4 and MCP-1 expression stimulated with MPL + Poly I:C were 
higher than those in the other groups, but there was no significant difference between the 
groups (Fig. 2C and D). MPL + Poly I:C did not induce the expression of genes encoding IL-1β, 
IL-8, IL-12p40, and TNF-α (data not shown).

MoDCs were efficiently stimulated by a combination of MPL and Poly I:C to 
express pro-inflammatory cytokines
Dendritic cell (DCs) are the most potent APCs that stimulate both innate and adaptive 
immune responses and can be a good target for vaccine adjuvants [16,21]. To evaluate the 
effects of MPL and Poly I:C on cytokine production in MoDCs, MoDCs were stimulated 
with each TLR agonist or their combination, followed by expression analysis of four pro-
inflammatory genes using real-time PCR. The combination of MPL and Poly I:C significantly 
upregulated mRNA expression of IL-1β compared to MoDCs stimulated with Poly I:C alone 
(p < 0.05) or MPL alone (p < 0.05) (Fig. 2E). Likewise, the combination significantly induced 
mRNA expression of IL-6 compared to MoDCs stimulated with each TLR agonist (p < 0.001) 
(Fig. 2F). In addition, the combination induced a higher mRNA expression of IL-12p40 than 
MoDCs stimulated with Poly I:C alone (p < 0.01) or MPL (p < 0.05) alone (Fig. 2G). The gene 
encoding TNF-α was significantly upregulated only in MoDCs stimulated with a combination 
of MPL and Poly I:C (p < 0.05) (Fig. 2H).

MPL + Poly I:C significantly enhanced antigen uptake of MoDCs
To evaluate the effect of TLR agonists on the antigen uptake capacity of MoDCs, an FITC-
dextran endocytosis assay was performed (Fig. 3). MoDCs incubated at 4ºC were used 
as a negative control for antigen uptake. MoDCs stimulated with all adjuvants displayed 
an upregulated endocytic profile. Treatment with a combination of MPL and Poly I:C 
significantly enhanced the FITC-dextran uptake of MoDCs compared to MoDCs without 
stimulation (p < 0.05). Non-stimulated MoDCs and MoDCs stimulated with single TLR 
agonist endocytosed similar amounts of FITC-dextran at 37°C.
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Fig. 1. In vitro effects of TLR agonists on the viability of equine PBMCs (n=3). Equine PBMCs were obtained from mixed breed horses and cultured with TLR 
agonists of different concentrations. Cell viability of PBMCs treated with MPL (A), Poly I:C (B) or MPL + Poly I:C (C). Cell viability was determined with an MTT 
assay after 2 days of culture with TLR agonist. 
OD, optical density; MPL, monophosphoryl lipid A; Poly I:C, polyinosinic-polycytidylic acid; TLR, Toll-like receptor; PBMC, peripheral blood mononuclear cell.



Pretreatment with a combination of MPL and Poly I:C stimulates T cell 
proliferation induced by MoDCs
After functional MoDC activation, the cells acquire the ability to induce T cell proliferation 
and activation. To investigate the T cell stimulating capacity of MoDCs treated with TLR 
agonists, we evaluated allogeneic T cell proliferation after the co-culture of naïve T cells with 
MoDCs pretreated with TLR agonist (Fig. 4). MoDCs pretreated with MPL alone or MPL + 
Poly I:C, induced significantly higher levels of T cell proliferation than unstimulated MoDCs, 
suggesting that a combination of MPL and Poly I:C effectively enhanced the activation of 
functional equine DC.

MPL + Poly I:C also induced BM-MSCs to express pro-inflammatory cytokine 
and chemokine genes
To evaluate the effects of MPL and Poly I:C on cytokine expression by BM-MSCs, BM-MSCs 
were stimulated with each TLR agonist or their combination, followed by expression analysis 
of four pro-inflammatory cytokine genes using real-time PCR. Only the combination of 
MPL and Poly I:C induced significant mRNA expression of IL-6 (p < 0.05), MCP-1 (p < 0.01), 
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TNF-α (H) in equine MoDCs (n = 3) stimulated with Toll-like receptor agonists. Equine MoDCs were generated from PBMCs using equine granulocyte macrophage 
colony stimulating factor and IL-4. The PBMCs and MoDCs were cultured in plain growth medium or cultured with MPL (0.25 μg/mL), Poly I:C (2.5 μg/mL), and 
MPL (0.25 μg/mL) + Poly I:C (2.5 μg/mL). The cytokine gene expression was normalized to the reference gene and calibrated to that in the medium control. All 
data are shown as mean ± SEM. Statistical analysis between the groups were performed using one-way ANOVA and Tukey’s multiple comparison test. 
IFN-γ, interferon gamma; MPL, monophosphoryl lipid A; Poly I:C, polyinosinic-polycytidylic acid; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; 
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*p < 0.05; **p < 0.01; ***p < 0.005; ****p < 0.001.



and VEGF (p < 0.01) relative to that in unstimulated BM-MSCs (Fig. 5A-C). TLR agonists, 
especially the combination of MPL and Poly I:C, also increased IL-8 mRNA expression, but 
the difference was not statistically significant (Fig. 5D).

DISCUSSION

The present study was conducted to evaluate the immune response of various equine cell 
lines treated with either MPL and Poly I:C alone or their combination. Despite inter-species 
variations, stimulation with TLR agonists results in distinct cytokine and chemokine responses 
and immune reactions. Thus, it can be assumed that in vitro experiments using horses could 
provide statistically significant data and clues for the basis of in vivo experiments.

In this study, we evaluated the effect of different concentration of Poly I:C (1.25–10 μg/mL) 
and MPL (0.125–1 μg/mL) on equine PBMCs and applied 2.5 μg/mL of Poly I:C and 0.25 
μg/mL of MPL to induce cytokine expression. The concentration of MPL used was much 
lower than that used in previous studies where 5 μg/mL of MPL was applied to stimulate 
equine PBMCs [7,9]. Although the results of the MTT assay indicated that the cell viability 
of PBMCs stimulated with high concentration MPL (> 0.25 μg/mL) was not significantly 
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different, we decided to use a low concentration based on the previous results where 5 μg/
mL of MPL suppressed IFN-γ production in equine PBMCs, and 1 μg/mL of MPL had a lower 
IFN-γ induction than that of 0.1 ug/ml of MPL in murine macrophages [7,23]. These data 
indicate that high concentration adjuvants do not always cause strong cytokine induction, 
which means that applying a new adjuvant necessitates dose-response analysis. Also, in the 
preliminary study, we used 1 μg/mL of Poly I:C and 0.1 μg/mL of MPL and evaluated cytokine 
expression by equine PBMCs. However, there was no significant induction of cytokine mRNA 
expression in the 1 μg/mL Poly I:C and 0.1 μg/mL of MPL adjuvanted groups compared to that 
in the non-stimulated group (data not shown). In summary, the concentration used in this 
study was appropriate for inducing cytokine expression.

The results obtained from this study indicate that the MPL and Poly I:C combination can 
effectively induce mRNA expression of IL-6 in equine PBMCs. Our finding is consistent with 
previous results, where the combination of MPL and Poly I:C induced significantly higher IL-6 
production compared to control or single-adjuvanted groups in mice [14]. During infection, 
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IL-6 production by immune cells is known to promote antiviral activity by suppressing viral 
replication in a dose-dependent manner, and is also required for protection against intracellular 
bacterial infections such as Rhodococcus equi and Listeria monocytogenes [8,24,25]. Thus, the strong 
induction of IL-6 by equine PBMCs cultured with a combination of MPL and Poly I:C might 
provide effective protection against bacterial and viral pathogens in horses.

IFN-γ is important in Th1 differentiation by upregulating IL-12 production in macrophages 
and DCs, which are activated by encounters with intracellular bacteria or bacterial products 
such as LPS [26]. As IFN-γ-mediated activity is critical for the immune environment to 
prevent infectious diseases, strategies using a variety of adjuvant components to improve 
IFN-γ induction have been examined [8,14,27]. In this study, the increase of IFN-γ mRNA 
expression in response to MPL combined with Poly I:C was more than additive, indicating 
synergy. While stimulation with MPL only moderately increased IFN-γ mRNA expression, 
stimulation with Poly I: C alone resulted in a relatively low induction of IFN-γ. These results 
suggest that MPL is more closely related to Th1 cytokine profile and that the combination 
of MPL and Poly I:C could be an effective candidate to protect against microbial diseases by 
upregulating IFN-γ responses.

In contrast to our results, where there was no enhancement of genes encoding IL-1β, IL-8, 
IL-12p40, and TNF-α, previous in vitro studies reported an increased expression of TNF-α, 
IL-1, and IL-8 in equine PBMCs and monocytes after exposure to LPS stimulation, which 
may be attributed to the differences between LPS and MPL or the stimulation period and 
concentration [28,29].

The capacity to secrete pro-inflammatory cytokines is a feature of DC maturation. Exposure 
to PAMP activates the PRR of DCs, which leads to the secretion of pro-inflammatory 
cytokines. Recently, stimulation with more than one PRR has been used to improve cytokine 
production, and several studies have reported synergistic activation of immune responses by 
applying multiple TLR agonists simultaneously in a vaccine [13,30]. In this study, we tested 
whether stimulation with a combination of TLR agonists could improve the capacity of 
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equine MoDCs to secrete pro-inflammatory cytokines. Evidence suggests that DCs cultured 
with either Poly I:C or LPS (a TLR 4 agonist) induce IL-1β, IL-6, IL-12p40, and TNF-α in 
horses and other species [31-33]. Likewise, Poly I:C or MPL alone also induced IL-1β, IL-6, 
and IL-12p40 mRNA expression in equine MoDCs, which was significantly increased by the 
combination of Poly I:C and MPL. The induction of TNF-α was significantly higher in the 
combination group than in the control group (p < 0.05).

IL-12p70 (IL-12), secreted by DCs, is a heterodimer composed of p35 and p40 units. In DCs, 
IL-12 modulates and activates CD4+ T cells and induces their proliferation, which promotes 
the development of acquired immunity. In a previous study, equine IL-12p35 and IL-12p40 
mRNA were both induced after exposure to LPS for 24 h in equine MoDCs [32]. However, 
in this study, while both MPL and Poly I:C induced IL-12p40 mRNA expression, there was 
little or no induction of IL-12p35 mRNA expression compared to the control group (data not 
shown). This result is in agreement with that of a previous study, which showed that the p40 
and p35 subunits were independently regulated in horses [8].

In the current study, we evaluated the antigen uptake capacity of equine MoDCs after 
stimulation with MPL or Poly I:C. Normally, mature DCs show downregulated endocytic 
activity. However, in this study, all groups stimulated with TLR agonists showed upregulated 
endocytic uptake of FITC-dextran compared to the unstimulated MoDCs. These results 
support those of previous studies that showed that the endocytic activity of DCs does not 
always correlate with the expression of maturation or that MoDCs may be blocked at an 
intermediate state of maturation [32,34].

In this study, we used TLR agonist-pretreated MoDCs from three mixed breed horses and 
CFSE-labeled allogenic lymphocytes from different species of horses to perform mixed 
lymphocyte reactions. Although the results showed that pretreatment with MPL alone, in 
MoDCs, significantly improved T cell proliferation (p < 0.05), the induction was considerably 
more effective when combined with Poly I:C (p < 0.01). Our results differed from previous 
data where murine DCs pretreated with Poly I:C alone were more effective in inducing both 
CD4 and CD8 T cell proliferation than murine DCs pretreated with MPL alone [14]. However, 
since this study only applied flow cytometry using forward and side scatter properties, cell 
viability dyes, and CFSE, and did not use fluorescent-labeled anti-horse antibodies such as 
anti-CD3, CD4, and CD8, which are used to identify T cell subsets, further studies using 
fluorescent conjugated antibodies are required to confirm our data.

Stimulation with TLR or nucleotide binding oligomerization domain-like receptor (NLR) 
agonists in MSC has been shown to increase their immunomodulatory properties [10,11,35]. 
In this study, we investigated the effect of TLR agonist combinations on cytokine induction 
by equine BM-MSCs. A previous study has shown that TLR 3 stimulation with Poly I:C or 
TLR 4 stimulation with LPS modulated the immune response of MSCs by increasing the 
expression of IL-6, C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine 
ligand 10 (CXCL10) [10]. Likewise, stimulation with MPL (TLR 4) also improved the 
immunomodulatory capacity of MSCs, which was significantly enhanced by combination 
with Poly I:C, except for IL-8. This is consistent with our results concerning PBMCs and 
MoDCs, which highlight the potential use of combined TLR agonists of different equine cells.

MCP-1 is the main paracrine cytokine of MSC and is involved in the recruitment of 
macrophages and monocytes. Increased MCP-1 levels are associated with paracrine 
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recruitment of innate immune cells and phagocytosis of bacteria by neutrophils, which could 
help eradicate infectious diseases [11]. In addition, MCP-1 exhibits angiogenic properties 
by inducing endothelial cell proliferation and migration through chemokine receptor 2 
[36]. In a previous study, MCP-1 deficient MSC showed reduced therapeutic efficacy in an 
animal wound healing model, which indicates that MCP-1 is required for wound healing [37]. 
Therefore, upregulation of MCP-1 mRNA expression through MPL and Poly I:C stimulation in 
MSC could be used to enhance wound healing function as well as immune stimulation.

MSCs can modulate immune responses of other immune cells by regulating cytokine and 
growth factor production. In addition to the immune-modulating roles, it is well-known that 
BM-MSCs play a critical role in homeostasis of hematopoietic stem cells and tissue repair by 
secreting a variety of growth factors, including VEGF, hepatocytes, and insulin-like growth 
factors [38]. VEGF is an important effector molecule because it promotes tissue repair, 
regulates differentiation, and enables MSCs to enhance the expression of osteogenic marker 
genes [38]. Therefore, the induction of increased VEGF mRNA expression through the 
combination of MPL and Poly I:C could influence therapeutic potentials by promoting tissue 
repair and modulating immune responses.
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