DOI QR코드

DOI QR Code

In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells

  • Dong-Ha Lee (College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University) ;
  • Eun-bee Lee (Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University) ;
  • Jong-pil Seo (Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University) ;
  • Eun-Ju Ko (College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University)
  • Received : 2023.01.04
  • Accepted : 2023.03.10
  • Published : 2023.05.31

Abstract

Background: Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. Objectives: The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). Methods: The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. Results: The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. Conclusions: The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.

Keywords

Acknowledgement

The author would like to thank the staff at Jeju National University Equine Hospital who helped collect experimental samples.

References

  1. Garcon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10(4):471-486. https://doi.org/10.1586/erv.11.29
  2. Figueiredo MD, Vandenplas ML, Hurley DJ, Moore JN. Differential induction of MyD88- and TRIF-dependent pathways in equine monocytes by Toll-like receptor agonists. Vet Immunol Immunopathol. 2009;127(1-2):125-134. https://doi.org/10.1016/j.vetimm.2008.09.028
  3. Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics. 2021;13(2):142.
  4. Campbell JD. Development of the CpG adjuvant 1018: a case study. Methods Mol Biol. 2017;1494:15-27. https://doi.org/10.1007/978-1-4939-6445-1_2
  5. Thompson KA, Strayer DR, Salvato PD, Thompson CE, Klimas N, Molavi A, et al. Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:polyC12U in the treatment of HIV infection. Eur J Clin Microbiol Infect Dis. 1996;15(7):580-587. https://doi.org/10.1007/BF01709367
  6. Gupta SK, Bajwa P, Deb R, Chellappa MM, Dey S. Flagellin a Toll-like receptor 5 agonist as an adjuvant in chicken vaccines. Clin Vaccine Immunol. 2014;21(3):261-270. https://doi.org/10.1128/CVI.00669-13
  7. Ziegler A, Gerber V, Marti E. In vitro effects of the Toll-like receptor agonists monophosphoryl lipid A and CpG-rich oligonucleotides on cytokine production by equine cells. Vet J. 2017;219:6-11. https://doi.org/10.1016/j.tvjl.2016.11.013
  8. Liu T, Nerren J, Murrell J, Juillard V, Garch HE, Martens R, et al. CpG-induced stimulation of cytokine expression by peripheral blood mononuclear cells of foals and their dams. J Equine Vet Sci. 2008;28(7):419-426. https://doi.org/10.1016/j.jevs.2008.05.005
  9. Ziegler A, Olzhausen J, Hamza E, Stojiljkovic A, Stoffel MH, Garbani M, et al. An allergen-fused dendritic cell-binding peptide enhances in vitro proliferation of equine T-cells and cytokine production. Vet Immunol Immunopathol. 2022;243:110351.
  10. Cassano JM, Schnabel LV, Goodale MB, Fortier LA. The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand. Vet Immunol Immunopathol. 2018;195:33-39. https://doi.org/10.1016/j.vetimm.2017.10.003
  11. Pezzanite LM, Chow L, Johnson V, Griffenhagen GM, Goodrich L, Dow S. Toll-like receptor activation of equine mesenchymal stromal cells to enhance antibacterial activity and immunomodulatory cytokine secretion. Vet Surg. 2021;50(4):858-871. https://doi.org/10.1111/vsu.13628
  12. Felippe MJ. Equine Clinical Immunology. 1st ed. Ames: John Wiley & Sons; 2015, 2-3. 
  13. Ko EJ, Lee YT, Lee Y, Kim KH, Kang SM. Distinct effects of monophosphoryl lipid A, oligodeoxynucleotide CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza vaccination. Immune Netw. 2017;17(5):326-342. https://doi.org/10.4110/in.2017.17.5.326
  14. Ahn SY, Le CT, Ko EJ. Monophosphoryl lipid A and Poly I:C combination adjuvant promoted ovalbumin-specific cell mediated immunity in mice model. Biology (Basel). 2021;10(9):908.
  15. Kim SY, Joo HG. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy. J Vet Sci. 2015;16(2):145-150. https://doi.org/10.4142/jvs.2015.16.2.145
  16. Lopez BS, Hurley DJ, Giancola S, Giguere S, Felippe MJ, Hart KA. The effect of age on foal monocyte-derived dendritic cell (MoDC) maturation and function after exposure to killed bacteria. Vet Immunol Immunopathol. 2019;210:38-45. https://doi.org/10.1016/j.vetimm.2018.11.020
  17. Ko EJ, Joo HG. Fucoidan enhances the survival and sustains the number of splenic dendritic cells in mouse endotoxemia. Korean J Physiol Pharmacol. 2011;15(2):89-94. https://doi.org/10.4196/kjpp.2011.15.2.89
  18. Seo JP, Tsuzuki N, Haneda S, Yamada K, Furuoka H, Tabata Y, et al. Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model. Vet Res Commun. 2014;38(1):73-80. https://doi.org/10.1007/s11259-013-9587-5
  19. Lee DH, Lee EB, Seo JP, Ko EJ. Evaluation of concurrent vaccinations with recombinant canarypox equine influenza virus and inactivated equine herpesvirus vaccines. J Anim Sci Technol. 2022;64(3):588-598. https://doi.org/10.5187/jast.2022.e30
  20. Beekman L, Tohver T, Leguillette R. Comparison of cytokine mRNA expression in the bronchoalveolar lavage fluid of horses with inflammatory airway disease and bronchoalveolar lavage mastocytosis or neutrophilia using REST software analysis. J Vet Intern Med. 2012;26(1):153-161. https://doi.org/10.1111/j.1939-1676.2011.00847.x
  21. Andreassen SM, Berg LC, Nielsen SS, Kristensen AT, Jacobsen S. mRNA expression of genes involved in inflammation and haemostasis in equine fibroblast-like synoviocytes following exposure to lipopolysaccharide, fibrinogen and thrombin. BMC Vet Res. 2015;11(1):141.
  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  23. Salkowski CA, Detore GR, Vogel SN. Lipopolysaccharide and monophosphoryl lipid A differentially regulate interleukin-12, gamma interferon, and interleukin-10 mRNA production in murine macrophages. Infect Immun. 1997;65(8):3239-3247. https://doi.org/10.1128/iai.65.8.3239-3247.1997
  24. Dalrymple SA, Lucian LA, Slattery R, McNeil T, Aud DM, Fuchino S, et al. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect Immun. 1995;63(6):2262-2268. https://doi.org/10.1128/iai.63.6.2262-2268.1995
  25. Kuo TM, Hu CP, Chen YL, Hong MH, Jeng KS, Liang CC, et al. HBV replication is significantly reduced by IL-6. J Biomed Sci. 2009;16(1):41.
  26. Kindt TJ, Goldsby RA, Osborne BA, Kuby J. Kuby Immunology. 6th ed. Ames: Macmillan; 2007, 375-377. 
  27. Le CT, Ahn SY, Kang SM, Ko EJ, Functional NK. Functional NK cell activation by ovalbumin immunization with a monophosphoryl lipid A and Poly I:C combination adjuvant promoted dendritic cell maturation. Vaccines (Basel). 2021;9(10):1061.
  28. Neuder LE, Keener JM, Eckert RE, Trujillo JC, Jones SL. Role of p38 MAPK in LPS induced proinflammatory cytokine and chemokine gene expression in equine leukocytes. Vet Immunol Immunopathol. 2009;129(3-4):192-199. https://doi.org/10.1016/j.vetimm.2008.11.006
  29. Sun WC, Moore JN, Hurley DJ, Vandenplas ML, Fortes B, Thompson R, et al. Differential modulation of lipopolysaccharide-induced expression of inflammatory genes in equine monocytes through activation of adenosine A2A receptors. Vet Immunol Immunopathol. 2010;134(3-4):169-177. https://doi.org/10.1016/j.vetimm.2009.08.018
  30. Hellman S, Hjertner B, Morein B, Fossum C. The adjuvant G3 promotes a Th1 polarizing innate immune response in equine PBMC. Vet Res. 2018;49(1):108.
  31. Naumann K, Wehner R, Schwarze A, Petzold C, Schmitz M, Rohayem J. Activation of dendritic cells by the novel Toll-like receptor 3 agonist RGC100. Clin Dev Immunol. 2013;2013:283649.
  32. Dietze B, Cierpka E, Schafer M, Schill W, Lutz MB. An improved method to generate equine dendritic cells from peripheral blood mononuclear cells: divergent maturation programs by IL-4 and LPS. Immunobiology. 2008;213(9-10):751-758. https://doi.org/10.1016/j.imbio.2008.07.024
  33. Auray G, Facci MR, van Kessel J, Buchanan R, Babiuk LA, Gerdts V. Differential activation and maturation of two porcine DC populations following TLR ligand stimulation. Mol Immunol. 2010;47(11-12):2103-2111. https://doi.org/10.1016/j.molimm.2010.03.016
  34. Rossmann L, Bagola K, Stephen T, Gerards AL, Walber B, Ullrich A, et al. Distinct single-component adjuvants steer human DC-mediated T-cell polarization via Toll-like receptor signaling toward a potent antiviral immune response. Proc Natl Acad Sci U S A. 2021;118(39):e2103651118.
  35. DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by Toll-like receptors: implications on therapeutic potential. Mediators Inflamm. 2010;2010:865601.
  36. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96(1):34-40. https://doi.org/10.1182/blood.V96.1.34
  37. Whelan DS, Caplice NM, Clover AJ. Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing. Sci Rep. 2020;10(1):2642.
  38. Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92.