• Title/Summary/Keyword: D-domain

Search Result 2,241, Processing Time 0.028 seconds

A NEW CHARACTERIZATION OF PRÜFER v-MULTIPLICATION DOMAINS

  • CHANG, GYU WHAN
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.631-636
    • /
    • 2015
  • Let D be an integral domain and w be the so-called w-operation on D. In this note, we introduce the notion of *(w)-domains: D is a *(w)-domain if $(({\cap}(x_i))({\cap}(y_j)))_w={\cap}(x_iy_j)$ for all nonzero elements $x_1,{\ldots},x_m$; $y_1,{\ldots},y_n$ of D. We then show that D is a $Pr{\ddot{u}}fer$ v-multiplication domain if and only if D is a *(w)-domain and $A^{-1}$ is of finite type for all nonzero finitely generated fractional ideals A of D.

POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.447-459
    • /
    • 2016
  • Let D be an integral domain, {$X_{\alpha}$} be a nonempty set of indeterminates over D, and $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}_1}$ be the first type power series ring over D. We show that if D is a t-SFT $Pr{\ddot{u}}fer$ v-multiplication domain, then $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}}_{1_{D-\{0\}}}$ is a Krull domain, and $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}}_1$ is a $Pr{\ddot{u}}fer$ v-multiplication domain if and only if D is a Krull domain.

SOME EXAMPLES OF ALMOST GCD-DOMAINS

  • Chang, Gyu Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.601-607
    • /
    • 2011
  • Let D be an integral domain, X be an indeterminate over D, and D[X] be the polynomial ring over D. We show that D is an almost weakly factorial PvMD if and only if D + XDS[X] is an integrally closed almost GCD-domain for each (saturated) multiplicative subset S of D, if and only if $D+XD_1[X]$ is an integrally closed almost GCD-domain for any t-linked overring $D_1$ of D, if and only if $D_1+XD_2[X]$ is an integrally closed almost GCD-domain for all t-linked overrings $D_1{\subseteq}D_2$ of D.

The *-Nagata Ring of almost Prüfer *-multiplication Domains

  • Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.587-593
    • /
    • 2014
  • Let D be an integral domain with quotient field K, $\bar{D}$ denote the integral closure of D in K and * be a star-operation on D. In this paper, we study the *-Nagata ring of AP*MDs. More precisely, we show that D is an AP*MD and $D[X]{\subseteq}\bar{D}[X]$ is a root extension if and only if the *-Nagata ring $D[X]_{N_*}$ is an AB-domain, if and only if $D[X]_{N_*}$ is an AP-domain. We also prove that D is a P*MD if and only if D is an integrally closed AP*MD, if and only if D is a root closed AP*MD.

2D Finite Difference Time Domain Method Using the Domain Decomposition Method (영역분할법을 이용한 2차원 유한차분 시간영역법 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1049-1054
    • /
    • 2013
  • In this paper, two-dimensional(2-D) Finite Difference Time Domain(FDTD) method using the domain decomposition method is proposed. We calculated the electromagnetic scattering field of a two dimensional rectangular Perfect Electric Conductor(PEC) structure using the 2-D FDTD method with Schur complement method as a domain decomposition method. Four domain decomposition and eight domain decomposition are applied for the analysis of the proposed structure. To validate the simulation results, the general 2-D FDTD algorithm for the total domain are applied to the same structure and the results show good agreement with the 2-D FDTD using the domain decomposition method.

FACTORIZATION AND DIVISIBILITY IN GENERALIZED REES RINGS

  • Kim, Hwan-Koo;Kwon, Tae-In;Park, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.473-482
    • /
    • 2004
  • Let D be an integral domain, I a proper ideal of D, and R =D[It, $t^{-1}$] a generalized Rees ring, where t is an indeterminate. For suitable conditions, we show that R satisfies the ACCP (resp., is a BFD, an FFD, a (pre-) Schreier domain, a G-GCD domain, a PVMD, a v-domain) if and only if D satisfies the ACCP (resp., is a BFD, an FFD, a (pre-) Schreier domain, a G-GCD domain, a PVMD, a v-domain).

SEMISTAR G-GCD DOMAIN

  • Gmiza, Wafa;Hizem, Sana
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1689-1701
    • /
    • 2019
  • Let ${\star}$ be a semistar operation on the integral domain D. In this paper, we prove that D is a $G-{\tilde{\star}}-GCD$ domain if and only if D[X] is a $G-{\star}_1-GCD$ domain if and only if the Nagata ring of D with respect to the semistar operation ${\tilde{\star}}$, $Na(D,{\star}_f)$ is a G-GCD domain if and only if $Na(D,{\star}_f)$ is a GCD domain, where ${\star}_1$ is the semistar operation on D[X] introduced by G. Picozza [12].

A NOTE ON LPI DOMAINS

  • Hu, Kui;Wang, Fanggui;Chen, Hanlin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.719-725
    • /
    • 2013
  • A domain is called an LPI domain if every locally principal ideal is invertible. It is proved in this note that if D is a LPI domain, then D[X] is also an LPI domain. This fact gives a positive answer to an open question put forward by D. D. Anderson and M. Zafrullah.

On *w-Finiteness Conditions

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.571-575
    • /
    • 2023
  • Let D be an integral domain and let * be a star-operation on D. In this article, we give new characterizations of *w-Noetherian domains and *w-principal ideal domains. More precisely, we show that D is a *w-Noetherian domain (resp., *w-principal ideal domain) if and only if every *w-countable type ideal of D is of *w-finite type (resp., principal).

ON THE CARDINALITY OF SEMISTAR OPERATIONS OF FINITE CHARACTER ON INTEGRAL DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.455-462
    • /
    • 2014
  • Let D be an integral domain with Spec(D) finite, K the quotient field of D, [D,K] the set of rings between D and K, and SFc(D) the set of semistar operations of finite character on D. It is well known that |Spec(D)| ${\leq}$ |SFc(D)|. In this paper, we prove that |Spec(D)| = |SFc(D)| if and only if D is a valuation domain, if and only if |Spec(D)| = |[D,K]|. We also study integral domains D such that |Spec(D)|+1 = |SFc(D)|.