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FACTORIZATION AND DIVISIBILITY
IN GENERALIZED REES RINGS

Hwankoo KiMm, TAE IN KwoN AND YOUNG SO0 PARK

ABSTRACT. Let D be an integral domain, I a proper ideal of D, and
R = D[It,t '] a generalized Rees ring, where ¢ is an indeterminate.
For suitable conditions, we show that R satisfies the ACCP (resp.,
is a BFD, an FFD, a (pre-)Schreier domain, a G-GCD domain, a
PVMD, a v-domain) if and only if D satisfies the ACCP (resp.,
is a BFD, an FFD, a (pre-)Schreier domain, a G-GCD domain, a
PVMD, a v-domain).

1. Introduction

Let D be an integral domain, I a proper ideal of D, and R = D[It,t™!]
a generalized Rees ring, where t is an indeterminate. In this paper, we
study the various factorization properties and divisibility in the general-
ized Rees ring R = D[It,t~!]. More precisely, for suitable conditions, we
show that R satisfies the ACCP (resp., is a BFD, an FFD, a pre-Schreier
domain, a Schreier domain, a G-GCD domain, a PVMD), a v-domain) if
and only if D satisfies the ACCP (resp., is a BFD, an FFD, a pre-Schreier
domain, a Schreier domain, a G-GCD domain, a PVMD, a v-domain).

General references for any undefined terminology or notation are [5,
8, 12, 13]. For an integral domain R, R* is its set of nonzero elements
and U(R) is its group of units. Throughout this paper, Z denotes the
set of integers. For two sets A and B, A C B (or B D A) means that A
is properly contained in B.
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2. Factorization properties

We first recall the various factorization properties which we will study
in this section. Let R be an integral domain.

e [P. M. Cohn] R is atomic if each nonzero nonunit of R is a product
of a finite number of irreducible elements (atoms) of R.

¢ R satisfies the ascending chain condition on principal ideals (ACCP)
if there does not exist an infinite strictly ascending chain of principal
ideals of R.

e [5, Anderson, Anderson, and Zafrullah] R is a bounded factorization
domain (BFD) if R is atomic and for each nonzero nonunit of R there
is a bound on the length of factorizations into products of irreducible
elements.

e [5, Anderson, Anderson, and Zafrullah] R is a finite factorization
domain (FFD) if each nonzero nonunit of R has only a finite number of
nonassociate divisors (and hence, only a finite number of factorizations
up to order and associates).

e [9, Anderson and Mullins] R is a strong finite factorization domain
(SFFD) if each nonzero element of R has only finitely many divisors.

e (17, Zaks] R is a half-factorial domain (HFD) if R is atomic and
whenever z--- &y = y1 -y with each w;,y; € R irreducible, then
m=n.

Let S be a grading monoid, i.e., a torsion-free cancellative monoid.
We say that R is an S-graded integral domain if for each s € S, there
exists a subgroup R, of the additive group of R such that

(1) R =P, Rs is the direct sum, as an abelian group, of the family
{Rs}, and
(2) RsRt C Ryqy for s,t € S.

The next proposition shows that the factorization properties of a
graded integral domain R contract to Ry.

PROPOSITION 2.1. Let R = @, g Rs be a graded integral domain.
Then Ry satisfies the ACCP (resp., is a BFD, an FFD, an SFFD) if R
satisfies ACCP(resp., a BFD, an FFD, an SFFD).

Proof. Note that U(R) N Ky = U(Ryp), where Kj is the quotient field
of Ry, and so U(R) N Ry = U(Ry). Thus if R satisfies the ACCP (resp.,
is a BFD, an FFD ), then Ry satisfies ACCP (resp., is a BFD, an FFD).
If R is an SFFD, then R is an FFD and U(R) is finite. Thus Ry is an
FFD and U(Ry) is finite. Hence Ry is an SFFD. O
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PROPOSITION 2.2. Let R = @, g Rs be a graded integral domain
with S N (=S) = {0}. If R is atomic (resp., an HFD, a UFD), then Rqy
is atomic (resp., an HFD, a UFD).

Proof. Let x be a nonzero nonunit of Rg. Then x = z1 -2, with
each z; irreducible in R. Since SN (—S) = {0}, each x; € Ry. Note that
r € Ry is irreducible in Ry if and only if 7 is irreducible in R. Thus each
x; is irreducible in Rg. Thus Ry is atomic. If R is an HFD, then there
is a length function I on R. Define lg, : R — Z by lg,(z) = lr(x)
for x € R}, i.e., lg, = lr|r,- Then it is easy to show that [g, is a length
function on Ry. Thus Ry is an HFD. The UFD case appeared in [10,
Proposition 6.3]. O

REMARK 1. In [10, p.96], D. F. Anderson gave the following ex-
ample of Z-graded integral domain R such that R is a UFD, but Ry
is not a UFD. Let K be a field and let R = K[X,Y,Z, W], graded
by deg X, Y =1 and deg Z, W = —1. Then R = @, R with
Ry = K[ XZ,XW,YZ,YW]|. Thus R is a UFD, but Ry is not a UFD
since Cl(Ry) = Z [12, p.66].

Let D be an integral domain with quotient field K and let I be a
proper ideal of D. If t is transcendental over D, let R = D[It,t7!] be
the (generalized) Rees ring of D with respect to I. In general, the (gen-
eralized) Rees ring R is a Z-graded ring with quotient field K (¢). More-
over, the element u = ¢! is an irreducible element of R. On the other
hand, since the ring R/uR is isomorphic to G;(D) = Yoo I"/I"H,
the associated graded ring with respect to I, it is clear that u is a prime
element of R if and only if G;(D) is an integral domain.

In [16], Whitman showed that R is a UFD if and only if D is a UFD
and u is a prime element of R. In [15, Proposition 3], J. Mott showed
that R is a GCD-domain (respectively, UFD, pseudo-principal (every
v-ideal is principal)) if and only if D is a GCD-domain (respectively,
UFD, pseudo-principal) and u is a prime element of R. In [4], D. D. An-
derson and D. F. Anderson investigated various factorization properties
in the case when [ is principal. To get the similar results, we need some
definitions.

DEeFINITION 2.3. Let R be a graded integral domain.

(1) Rissaid to be graded atomic if each nonzero nonunit homogeneous
element of R is a product of a finite number of (homogeneous)
irreducible elements of R.

(2) Riscalled a graded BFD if R is graded atomic and for each nonzero
nonunit homogeneous element of R, there is a bound on the length
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of factorizations into product of (homogeneous) irreducible ele-
ments.

(3) R is called a graded FFD if each nonzero nonunit homogeneous
element of R has at most a finite number of nonassociate (homo-
geneous) irreducible divisors.

Recall from [8] that a saturated multiplicatively closed subset of an
integral domain R is said to be a splitting set if for each 0 # d € R,
we can write d = sa for some s € S and a € R with RN aR = s'aR
for all 8 € R. A splitting set S is said to be an lem splitting set if for
each s € S and d € R, sRNdR is principal. Several characterizations
of splitting set and lem splitting sets are given in [8, Theorem 2.2 and
Proposition 2.4].

PROPOSITION 2.4. Let D be an integral domain, I a proper ideal of
D, and R = D[It,t7']. Assume that u := t~! is prime in R. Then we
have the following results.

(1) u generates a splitting multiplicative set of R if and only if[\u"R =
{0}.

(2) NI™ = {0} if and only if Nu"R = {0}.

(3) If R is atomic, then (Ju"R = {0}.

Proof. (1) See [7, Proposition 1.6].

(2) Note that u"RND = I" for alln > 0, and so (" u"R)ND = I"™.
Thus if u"R = {0}, then ((I" = {0}. Conversely, suppose that
(u"R # {0}. Then the intersection, being a homogeneous ideal, con-
tains a nonzero homogeneous element, and hence a nonzero homoge-
neous element of degree 0. But then (u"R)N D = NI" # {0}, a
contradiction.

(3) By [7, Corollary 1.7] and (1), (3) holds. O

REMARK 2. Let I be a finitely generated ideal of an integral domain
R with rank I < 1. Then (I" = {0}.

PROPOSITION 2.5. Let D be an integral domain, I an ideal of D, and
R = D[It,t71]. Assume that R is an atomic domain and u = t~! is a
prime element of R. Then the following conditions are equivalent.

(1) R satisfies the ACCP (respectively, is a BFD, an FFD).

(2) D satisties the ACCP (respectively, is a BFD, an FFD).

(3) R satisfies the ACC on homogeneous principal ideals (respectively,
is a graded BFD, graded FFD).
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Proof. (1) = (2): Note that U(R) N K = U(D), where K is the
quotient field of D. Thus this follows from [5, p. 16].

(1) = (3) and (3) = (2) are obvious.

(2) = (1): If D satisfies the ACCP (respectively, is a BFD, an FFD),
then D[t] satisfies the ACCP (respectively, is a BFD, an FFD). Thus,
since the saturated multiplicatively closed set generated by the prime
element ¢ in D[t] is a splitting multiplicative set, D|[t]; = D|t, u| satisfies
the ACCP (respectively, is a BFD, an FFD). Also note that the saturated
multiplicatively closed set generated by the prime element u in R is a
splitting multiplicative set [7, Corollary 1.7]. Hence, by [6, Theorem 3.1],
R satisfies the ACCP (respectively, is a BFD, an FFD) since D[t,u] =
R,. O

3. Divisibility

Let R be an integral domain with the quotient field K and with
the group of units U = U(R). Let K* = K \ {0} and let G(R) =
K*/U. Then the group G(R), called a group of divisibility of R, may
be considered to be a directed partially ordered group with the order
relation: zU < yU if and only if there exists » € R such that y = zr,
ie,z|yin R.

ProPoOSITION 3.1. Let D be an integral domain, I a proper ideal of
D, and R = D|[It,t™!]. Assume that t~! is prime in R and NI"™ = {0}.
Then G(R) is order-isomorphic to G(DI]t]).

Proof. Since NI™ = {0}, the saturated multiplicatively closed set gen-
erated by ¢! in R is a splitting multiplicative set with R, = D[t,t1].
Hence G(R) is order-isomorphic to G(D[t,t™}]) ®¢ Z. Since {t"}n>¢ is
a splitting multiplicative set generated by the prime ¢ in D[t], we also
have that G(D[t]) is order-isomorphic to G(D[t,t~!]) ®¢ Z. Hence G(R)
is order-isomorphic to G(D[t]). O

Several classes of integral domains are characterized by their groups
of divisibility. In particular, an integral domain R is a GCD-domain
(resp., pseudo-principal domain, i.e., every v-ideal is principal.) if and
only if G(R) is lattice-ordered (resp., complete lattice-ordered), and R
is a UFD if and only if G(R) is a cardinal sum of copies of Z. It is
well-known that R is a pseudo-principal domain (resp., UFD, GCD-
domain) if and only if R[X] is a pseudo-principal domain (resp., UFD,
GCD-domain). Thus we recover Mott’s results as follows.
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COROLLARY 3.2. Let D be an integral domain, I a proper ideal of
D, and R = D|[It,t7!]. Assume that NI" = {0}. Then R is a pseudo-
principal domain (resp., UFD, GCD-domain) if and only if D is a pseudo-
principal domain (resp., UFD, GCD-domain) and t~* is prime in R.

PROPOSITION 3.3. Let D be an integral domain, I a proper ideal of
D, and R = D|[It,t71]|. Assume that u :=t~! is prime in R.

(1) R is integrally closed if and only if D is integrally closed.
(2) Assume further that NI™ = {0}. Then R is completely integrally
closed if and only if D is completely integrally closed.

Proof. (1) This follows from R, = DIt,u] = D[t]; and [6, Proposition
4.2].

(2) This follows from R, = D[t,u] = D[t]; and [6, Proposition 4.3 and
Corollary 4.5], since {t"},>0 (resp., {u"}n>0) is a splitting multiplicative
set generated by the prime ¢ (resp., u) in D[t] (resp., R). O

Let D be an integral domain. An element x € D is said to be primal
if x|ab implies * = rs, where r|a and s|b. We call = completely pri-
mal if every factor of x is primal. An integral domain D is said to be
pre-Schreier if every nonzero element of D is primal. Integrally closed
pre-Schreier domains, called Schreier domains, were introduced by P.
M. Cohn. In [11], Cohn also proved the following analog of Nagata’s
UFD Theorem which we call Cohn’s Theorem: Let D be an integral
domain and let S be a subset of D which is multiplicatively generated
by completely primal elements of D. If Dg is pre-Schreier, then so is D.

PROPOSITION 3.4. Let D be an integral domain, I a proper ideal of
D, and R = D[It,t™1].
(1) Assume that t~! is a completely primal element in R. Then R is
a pre-Schreier domain if and only if D is a pre-Schreier domain.
(2) Assume that t™! is prime in R. Then R is a Schreier domain if
and only if D is a Schreier domain.

Proof. (1) If D is a pre-Schreier domain, then D[t] is a pre-Schreier
domain. Thus D[t} = D[t,t7!] is a pre-Schreier domain. Note that
R,-» = D[t,t7!]. It follows from Cohn’s theorem that R is a pre-Schreier
domain. Conversely, suppose that R is a pre-Schreier domain. We show
that each nonzero element d of D is primal. Let d|bc in D. Then d|bc
in R. Since R is a (pre-)Schreier domain, we have d = fg such that f|b
and g|c in R for some f,g € R. Thus f = bit™ and g = ¢;t" for some
bi,c1 € D and m,n € Z. But d = fg shows that m +n = 0, and so
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f=bit™ and g = ¢1t™™. Clearly b1|b in D and c¢;j|c in D and d = bicy.
Hence d is primal. Thus D is a pre-Schreier domain.

(2) This follows from (1) and Proposition 3.3, since a Schreier domain
is an integrally closed pre-Schreier domain. O

Recall that an integral domain R is called a GCD domain (resp., G-
GCD domain, PVMD, and v-domain) if every finite type v-ideal of R is
principal (resp., invertible, ¢t-invertible, and v-invertible). These classes
of domains are investigated by many authors. The following result is
well-known.

LEMMA 3.5. Let S be a multiplicatively closed subset of an integral
domain R. If I is a v-ideal of R of finite type such that I~! is also of
finite type, then Ig is a v-ideal of Rg of finite type.

The following result shows that if I is a finite type v-ideal of an
integral domain R, then I is invertible if and only if I is locally principal.
Note that it is a well-known result in the case when [ is finitely generated
(14, Theorem 62].

LEMMA 3.6. Let I be a finite type v-ideal of an integral domain R.

Then I is invertible if and only if Ip; is principal for each maximal ideal
M of R.

Proof. Assume that I is invertible. Let M be a maximal ideal of
R. Then I, is also invertible in R)s. Since Ry is quasi-local, Is is
principal. Conversely, assume that Iy, is principal for each maximal ideal
M of R. If I is not invertible, then I7~! C M for some maximal ideal M
of R. Since Ips is principal, we can choose a € I such that Inr = aRyy.
Let I = (ai,...,an)y- Then for each i = 1,...,n, we have s;a; € aR for
suitable elements s; € R\M. Let s = s1---s, € R\M. Then sa"la; € R
for each i = 1,...,n and hence sa=! € R: (a1,...,an) = R: [ =171,
Thus s = aa"'s € IT-* C M, a contradiction. W

Recall that an integral domain R is called a v-coherent domain if
for each nonzero finitely generated ideal I of R there exists a finitely
generated ideal .J such that I~! = J,, equivalently, for each v-ideal I
of finite type, I~! is a v-ideal of finite type. Note that the class of
v-coherent domains includes G-GCD domains and PVMD’s.

PROPOSITION 3.7. The following conditions are equivalent for an in-
tegral domain R.

(1) R is a G-GCD domain.
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(2) Rp is a GCD domain for each prime ideal P of R and R is a
v-coherent domain.

(3) Ru is a GCD domain for each maximal ideal M of R and R is a
v-coherent domain.

Proof. (1) = (2): This follows from [1, Corollary 1] and above re-
marks. (2) = (3): Obvious. (3) = (1): Let I be a v-ideal of finite type.
Then we show that I is invertible. Let M be a maximal ideal of R. Since
R is a v-coherent domain, 17! is a v-ideal of finite type and hence Iy is
also a v-ideal of Rjs of finite type by Lemma 3.5. Since Rjs is a GCD
domain, Ips is principal. Therefore [ is invertible by Lemma 3.6. -

Recall that an integral domain R is a w-domain if every nonzero
principal ideal of R is a (finite) product of prime ideals, equivalently,
every t-ideal is invertible. An integral domain R is called a Mori domain
if it satisfies the ACC on v-ideals. Note that if R is a Mori domain, then
every v-ideal is of finite type and hence every t-ideal of R is a v-ideal
(the converse is always true).

COROLLARY 3.8. The following conditions are equivalent for an in-
tegral domain R.
(1) R is a m-domain.
(2) Ry is a UFD for each maximal ideal M of R and R is a Mori
domain.
(3) Ry is a m-domain for each maximal ideal M of R and R is a Mori
domain.

Proof. (1) = (2): This follows from [13, Theorem 46.7]. (2) = (3):
This follows from {13, Theorem 46.5 and Theorem 46.7]. (3) = (1):
This follows from Proposition 3.7 and above remark. ol

We denote by Z(R) the set of all finite type v-ideals of an integral
domain R. The other notations below follow from [8].

PROPOSITION 3.9. Let S be an Icm splitting multiplicative set for an
integral domain R. Then R is a G-GCD domain (resp., a v-domain) if
and only if Rg is a G-GCD domain (resp., a v-domain).

Proof. Let S be an lcm splitting multiplicative set with the m-comple-
ment S’. By [8, Theorem 3.7] we have an isomorphism Zf(R) —
P¢(Rs) ®c Z¢(Rg) that takes Inv(R) (resp., Inv,(R)) to Inv(Rs) ®¢c
Inv(Rg) (resp., Inv,(Rs) ®¢ Inv,(Rg/)). It follows from [8, Theorem
4.1] that Rg is a GCD-domain. Thus Z(Rs)=Inv(Rs)=Inv,(Rs') =
P(Rg). Thus R is a G-GCD domain if and only if Z¢(Rs)=Inv(Rg) if
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and only if Rg is a G-GCD domain. Also, R is a v-domain if and only
if Z2¢(Rs)=Inv,(Rg) if and only if Rg is a v-domain. O

COROLLARY 3.10. Let D be an integral domain, I a proper ideal of
D, and R = D[It,t7!]. Assume that t~! is prime in R and NI" = {0}.
Then R is a G-GCD domain (resp., a PVMD, a v-domain) if and only
if D is a G-GCD domain (resp., a PVMD, a v-domain).

Proof. Let S be the saturated multiplicative set generated by the
prime ¢! in R. Then S is an lem splitting multiplicative set. Thus the
assertions follow immediately from Proposition 3.9. O
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