FACTORIZATION AND DIVISIBILITY IN GENERALIZED REES RINGS

HWANKOO KIM, TAE IN KWON AND YOUNG SOO PARK

ABSTRACT. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$ a generalized Rees ring, where t is an indeterminate. For suitable conditions, we show that R satisfies the ACCP (resp., is a BFD, an FFD, a (pre-)Schreier domain, a G-GCD domain, a PVMD, a v-domain) if and only if D satisfies the ACCP (resp., is a BFD, an FFD, a (pre-)Schreier domain, a G-GCD domain, a PVMD, a v-domain).

1. Introduction

Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$ a generalized Rees ring, where t is an indeterminate. In this paper, we study the various factorization properties and divisibility in the generalized Rees ring $R = D[It, t^{-1}]$. More precisely, for suitable conditions, we show that R satisfies the ACCP (resp., is a BFD, an FFD, a pre-Schreier domain, a Schreier domain, a G-GCD domain, a PVMD, a v-domain) if and only if D satisfies the ACCP (resp., is a BFD, an FFD, a pre-Schreier domain, a Schreier domain, a G-GCD domain, a PVMD, a v-domain).

General references for any undefined terminology or notation are [5, 8, 12, 13]. For an integral domain R, R^* is its set of nonzero elements and U(R) is its group of units. Throughout this paper, \mathbb{Z} denotes the set of integers. For two sets A and B, $A \subset B$ (or $B \supset A$) means that A is properly contained in B.

Received February 20, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 13F05, 13F15, 13G05.

Key words and phrases: ACCP, BFD, FFD, (pre-)Schreier, G-GCD domain, PVMD, v-domain.

The first author was supported by a grant from the Post-Doc. Program(2000), Kyungpook National University, Korea. The second author was supported by Kyungpook National University Research Fund, 2000, while the third author was supported by Changwon National University Research Fund, 2001.

2. Factorization properties

We first recall the various factorization properties which we will study in this section. Let R be an integral domain.

- [P. M. Cohn] R is atomic if each nonzero nonunit of R is a product of a finite number of irreducible elements (atoms) of R.
- ullet R satisfies the ascending chain condition on principal ideals (ACCP) if there does not exist an infinite strictly ascending chain of principal ideals of R.
- [5, Anderson, Anderson, and Zafrullah] R is a bounded factorization domain (BFD) if R is atomic and for each nonzero nonunit of R there is a bound on the length of factorizations into products of irreducible elements.
- [5, Anderson, Anderson, and Zafrullah] R is a finite factorization domain (FFD) if each nonzero nonunit of R has only a finite number of nonassociate divisors (and hence, only a finite number of factorizations up to order and associates).
- [9, Anderson and Mullins] R is a strong finite factorization domain (SFFD) if each nonzero element of R has only finitely many divisors.
- [17, Zaks] R is a half-factorial domain (HFD) if R is atomic and whenever $x_1 \cdots x_m = y_1 \cdots y_n$ with each $x_i, y_j \in R$ irreducible, then m = n.

Let S be a grading monoid, i.e., a torsion-free cancellative monoid. We say that R is an S-graded integral domain if for each $s \in S$, there exists a subgroup R_s of the additive group of R such that

- (1) $R = \bigoplus_{s \in S} R_s$ is the direct sum, as an abelian group, of the family $\{R_s\}$, and
- (2) $R_s R_t \subseteq R_{s+t}$ for $s, t \in S$.

The next proposition shows that the factorization properties of a graded integral domain R contract to R_0 .

PROPOSITION 2.1. Let $R = \bigoplus_{s \in S} R_s$ be a graded integral domain. Then R_0 satisfies the ACCP (resp., is a BFD, an FFD, an SFFD) if R satisfies ACCP(resp., a BFD, an FFD, an SFFD).

Proof. Note that $U(R) \cap K_0 = U(R_0)$, where K_0 is the quotient field of R_0 , and so $U(R) \cap R_0 = U(R_0)$. Thus if R satisfies the ACCP (resp., is a BFD, an FFD), then R_0 satisfies ACCP (resp., is a BFD, an FFD). If R is an SFFD, then R is an FFD and U(R) is finite. Thus R_0 is an FFD and $U(R_0)$ is finite. Hence R_0 is an SFFD.

PROPOSITION 2.2. Let $R = \bigoplus_{s \in S} R_s$ be a graded integral domain with $S \cap (-S) = \{0\}$. If R is atomic (resp., an HFD, a UFD), then R_0 is atomic (resp., an HFD, a UFD).

Proof. Let x be a nonzero nonunit of R_0 . Then $x = x_1 \cdots x_n$ with each x_i irreducible in R. Since $S \cap (-S) = \{0\}$, each $x_i \in R_0$. Note that $r \in R_0$ is irreducible in R_0 if and only if r is irreducible in R. Thus each x_i is irreducible in R_0 . Thus R_0 is atomic. If R is an HFD, then there is a length function l_R on R. Define $l_{R_0} : R_0^* \longrightarrow \mathbb{Z}$ by $l_{R_0}(x) = l_R(x)$ for $x \in R_0^*$, i.e., $l_{R_0} = l_R|_{R_0}$. Then it is easy to show that l_{R_0} is a length function on R_0 . Thus R_0 is an HFD. The UFD case appeared in [10, Proposition 6.3].

REMARK 1. In [10, p.96], D. F. Anderson gave the following example of \mathbb{Z} -graded integral domain R such that R is a UFD, but R_0 is not a UFD. Let K be a field and let R = K[X,Y,Z,W], graded by $\deg X, Y = 1$ and $\deg Z, W = -1$. Then $R = \bigoplus_{n \in \mathbb{Z}} R_n$ with $R_0 = K[XZ,XW,YZ,YW]$. Thus R is a UFD, but R_0 is not a UFD since $Cl(R_0) = \mathbb{Z}$ [12, p.66].

Let D be an integral domain with quotient field K and let I be a proper ideal of D. If t is transcendental over D, let $R = D[It, t^{-1}]$ be the (generalized) Rees ring of D with respect to I. In general, the (generalized) Rees ring R is a \mathbb{Z} -graded ring with quotient field K(t). Moreover, the element $u = t^{-1}$ is an irreducible element of R. On the other hand, since the ring R/uR is isomorphic to $G_I(D) = \sum_{n=0}^{\infty} I^n/I^{n+1}$, the associated graded ring with respect to I, it is clear that u is a prime element of R if and only if $G_I(D)$ is an integral domain.

In [16], Whitman showed that R is a UFD if and only if D is a UFD and u is a prime element of R. In [15, Proposition 3], J. Mott showed that R is a GCD-domain (respectively, UFD, pseudo-principal (every v-ideal is principal)) if and only if D is a GCD-domain (respectively, UFD, pseudo-principal) and u is a prime element of R. In [4], D. D. Anderson and D. F. Anderson investigated various factorization properties in the case when I is principal. To get the similar results, we need some definitions.

DEFINITION 2.3. Let R be a graded integral domain.

- (1) R is said to be *graded atomic* if each nonzero nonunit homogeneous element of R is a product of a finite number of (homogeneous) irreducible elements of R.
- (2) R is called a graded BFD if R is graded atomic and for each nonzero nonunit homogeneous element of R, there is a bound on the length

- of factorizations into product of (homogeneous) irreducible elements.
- (3) R is called a *graded FFD* if each nonzero nonunit homogeneous element of R has at most a finite number of nonassociate (homogeneous) irreducible divisors.

Recall from [8] that a saturated multiplicatively closed subset of an integral domain R is said to be a *splitting set* if for each $0 \neq d \in R$, we can write d = sa for some $s \in S$ and $a \in R$ with $s'R \cap aR = s'aR$ for all $s' \in R$. A splitting set S is said to be an *lcm splitting set* if for each $S \in S$ and $S \in S$ and S is principal. Several characterizations of splitting set and lcm splitting sets are given in [8, Theorem 2.2 and Proposition 2.4].

PROPOSITION 2.4. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$. Assume that $u := t^{-1}$ is prime in R. Then we have the following results.

- (1) u generates a splitting multiplicative set of R if and only if $\bigcap u^n R = \{0\}$.
- (2) $\bigcap I^n = \{0\}$ if and only if $\bigcap u^n R = \{0\}$.
- (3) If R is atomic, then $\bigcap u^n R = \{0\}$.

Proof. (1) See [7, Proposition 1.6].

(2) Note that $u^nR \cap D = I^n$ for all $n \geq 0$, and so $(\bigcap u^nR) \cap D = \bigcap I^n$. Thus if $\bigcap u^nR = \{0\}$, then $\bigcap I^n = \{0\}$. Conversely, suppose that $\bigcap u^nR \neq \{0\}$. Then the intersection, being a homogeneous ideal, contains a nonzero homogeneous element, and hence a nonzero homogeneous element of degree 0. But then $(\bigcap u^nR) \cap D = \bigcap I^n \neq \{0\}$, a contradiction.

REMARK 2. Let I be a finitely generated ideal of an integral domain R with $rank I \leq 1$. Then $\bigcap I^n = \{0\}$.

PROPOSITION 2.5. Let D be an integral domain, I an ideal of D, and $R = D[It, t^{-1}]$. Assume that R is an atomic domain and $u = t^{-1}$ is a prime element of R. Then the following conditions are equivalent.

- (1) R satisfies the ACCP (respectively, is a BFD, an FFD).
- (2) D satisfies the ACCP (respectively, is a BFD, an FFD).
- (3) R satisfies the ACC on homogeneous principal ideals (respectively, is a graded BFD, graded FFD).

- *Proof.* (1) \Rightarrow (2): Note that $U(R) \cap K = U(D)$, where K is the quotient field of D. Thus this follows from [5, p. 16].
 - $(1) \Rightarrow (3)$ and $(3) \Rightarrow (2)$ are obvious.
- (2) \Rightarrow (1): If D satisfies the ACCP (respectively, is a BFD, an FFD), then D[t] satisfies the ACCP (respectively, is a BFD, an FFD). Thus, since the saturated multiplicatively closed set generated by the prime element t in D[t] is a splitting multiplicative set, $D[t]_t = D[t, u]$ satisfies the ACCP (respectively, is a BFD, an FFD). Also note that the saturated multiplicatively closed set generated by the prime element u in R is a splitting multiplicative set [7, Corollary 1.7]. Hence, by [6, Theorem 3.1], R satisfies the ACCP (respectively, is a BFD, an FFD) since $D[t, u] = R_u$.

3. Divisibility

Let R be an integral domain with the quotient field K and with the group of units U = U(R). Let $K^* = K \setminus \{0\}$ and let $G(R) = K^*/U$. Then the group G(R), called a group of divisibility of R, may be considered to be a directed partially ordered group with the order relation: $xU \leq yU$ if and only if there exists $r \in R$ such that y = xr, i.e., $x \mid y$ in R.

PROPOSITION 3.1. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$. Assume that t^{-1} is prime in R and $\cap I^n = \{0\}$. Then G(R) is order-isomorphic to G(D[t]).

Proof. Since $\cap I^n = \{0\}$, the saturated multiplicatively closed set generated by t^{-1} in R is a splitting multiplicative set with $R_{t^{-1}} = D[t, t^{-1}]$. Hence G(R) is order-isomorphic to $G(D[t, t^{-1}]) \oplus_C \mathbb{Z}$. Since $\{t^n\}_{n \geq 0}$ is a splitting multiplicative set generated by the prime t in D[t], we also have that G(D[t]) is order-isomorphic to $G(D[t, t^{-1}]) \oplus_C \mathbb{Z}$. Hence G(R) is order-isomorphic to G(D[t]).

Several classes of integral domains are characterized by their groups of divisibility. In particular, an integral domain R is a GCD-domain (resp., pseudo-principal domain, i.e., every v-ideal is principal.) if and only if G(R) is lattice-ordered (resp., complete lattice-ordered), and R is a UFD if and only if G(R) is a cardinal sum of copies of \mathbb{Z} . It is well-known that R is a pseudo-principal domain (resp., UFD, GCD-domain) if and only if R[X] is a pseudo-principal domain (resp., UFD, GCD-domain). Thus we recover Mott's results as follows.

COROLLARY 3.2. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$. Assume that $\cap I^n = \{0\}$. Then R is a pseudoprincipal domain (resp., UFD, GCD-domain) if and only if D is a pseudoprincipal domain (resp., UFD, GCD-domain) and t^{-1} is prime in R.

PROPOSITION 3.3. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$. Assume that $u := t^{-1}$ is prime in R.

- (1) R is integrally closed if and only if D is integrally closed.
- (2) Assume further that $\cap I^n = \{0\}$. Then R is completely integrally closed if and only if D is completely integrally closed.

Proof. (1) This follows from $R_u = D[t, u] = D[t]_t$ and [6, Proposition 4.2].

(2) This follows from $R_u = D[t, u] = D[t]_t$ and [6, Proposition 4.3 and Corollary 4.5], since $\{t^n\}_{n\geq 0}$ (resp., $\{u^n\}_{n\geq 0}$) is a splitting multiplicative set generated by the prime t (resp., u) in D[t] (resp., R).

Let D be an integral domain. An element $x \in D$ is said to be primal if x|ab implies x = rs, where r|a and s|b. We call x completely primal if every factor of x is primal. An integral domain D is said to be pre-Schreier if every nonzero element of D is primal. Integrally closed pre-Schreier domains, called Schreier domains, were introduced by P. M. Cohn. In [11], Cohn also proved the following analog of Nagata's UFD Theorem which we call Cohn's Theorem: Let D be an integral domain and let S be a subset of D which is multiplicatively generated by completely primal elements of D. If D_S is pre-Schreier, then so is D.

PROPOSITION 3.4. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$.

- (1) Assume that t^{-1} is a completely primal element in R. Then R is a pre-Schreier domain if and only if D is a pre-Schreier domain.
- (2) Assume that t^{-1} is prime in R. Then R is a Schreier domain if and only if D is a Schreier domain.

Proof. (1) If D is a pre-Schreier domain, then D[t] is a pre-Schreier domain. Thus $D[t]_t = D[t, t^{-1}]$ is a pre-Schreier domain. Note that $R_{t^{-1}} = D[t, t^{-1}]$. It follows from Cohn's theorem that R is a pre-Schreier domain. Conversely, suppose that R is a pre-Schreier domain. We show that each nonzero element d of D is primal. Let d|bc in D. Then d|bc in R. Since R is a (pre-)Schreier domain, we have d = fg such that f|b and g|c in R for some $f, g \in R$. Thus $f = b_1 t^m$ and $g = c_1 t^n$ for some $b_1, c_1 \in D$ and $m, n \in \mathbb{Z}$. But d = fg shows that m + n = 0, and so

 $f = b_1 t^m$ and $g = c_1 t^{-m}$. Clearly $b_1 | b$ in D and $c_1 | c$ in D and $d = b_1 c_1$. Hence d is primal. Thus D is a pre-Schreier domain.

(2) This follows from (1) and Proposition 3.3, since a Schreier domain is an integrally closed pre-Schreier domain. \Box

Recall that an integral domain R is called a GCD domain (resp., G-GCD domain, PVMD, and v-domain) if every finite type v-ideal of R is principal (resp., invertible, t-invertible, and v-invertible). These classes of domains are investigated by many authors. The following result is well-known.

LEMMA 3.5. Let S be a multiplicatively closed subset of an integral domain R. If I is a v-ideal of R of finite type such that I^{-1} is also of finite type, then I_S is a v-ideal of R_S of finite type.

The following result shows that if I is a finite type v-ideal of an integral domain R, then I is invertible if and only if I is locally principal. Note that it is a well-known result in the case when I is finitely generated [14, Theorem 62].

LEMMA 3.6. Let I be a finite type v-ideal of an integral domain R. Then I is invertible if and only if I_M is principal for each maximal ideal M of R.

Proof. Assume that I is invertible. Let M be a maximal ideal of R. Then I_M is also invertible in R_M . Since R_M is quasi-local, I_M is principal. Conversely, assume that I_M is principal for each maximal ideal M of R. If I is not invertible, then $II^{-1} \subseteq M$ for some maximal ideal M of R. Since I_M is principal, we can choose $a \in I$ such that $I_M = aR_M$. Let $I = (a_1, \ldots, a_n)_v$. Then for each $i = 1, \ldots, n$, we have $s_i a_i \in aR$ for suitable elements $s_i \in R \setminus M$. Let $s = s_1 \cdots s_n \in R \setminus M$. Then $sa^{-1}a_i \in R$ for each $i = 1, \ldots, n$ and hence $sa^{-1} \in R : (a_1, \ldots, a_n) = R : I = I^{-1}$. Thus $s = aa^{-1}s \in II^{-1} \subseteq M$, a contradiction. \square

Recall that an integral domain R is called a v-coherent domain if for each nonzero finitely generated ideal I of R there exists a finitely generated ideal J such that $I^{-1} = J_v$, equivalently, for each v-ideal I of finite type, I^{-1} is a v-ideal of finite type. Note that the class of v-coherent domains includes G-GCD domains and PVMD's.

PROPOSITION 3.7. The following conditions are equivalent for an integral domain R.

(1) R is a G-GCD domain.

- (2) R_P is a GCD domain for each prime ideal P of R and R is a v-coherent domain.
- (3) R_M is a GCD domain for each maximal ideal M of R and R is a v-coherent domain.

Proof. (1) \Rightarrow (2): This follows from [1, Corollary 1] and above remarks. (2) \Rightarrow (3): Obvious. (3) \Rightarrow (1): Let I be a v-ideal of finite type. Then we show that I is invertible. Let M be a maximal ideal of R. Since R is a v-coherent domain, I^{-1} is a v-ideal of finite type and hence I_M is also a v-ideal of R_M of finite type by Lemma 3.5. Since R_M is a GCD domain, I_M is principal. Therefore I is invertible by Lemma 3.6.

Recall that an integral domain R is a π -domain if every nonzero principal ideal of R is a (finite) product of prime ideals, equivalently, every t-ideal is invertible. An integral domain R is called a Mori domain if it satisfies the ACC on v-ideals. Note that if R is a Mori domain, then every v-ideal is of finite type and hence every t-ideal of R is a v-ideal (the converse is always true).

COROLLARY 3.8. The following conditions are equivalent for an integral domain R.

- (1) R is a π -domain.
- (2) R_M is a UFD for each maximal ideal M of R and R is a Mori domain.
- (3) R_M is a π -domain for each maximal ideal M of R and R is a Mori domain.

Proof. (1) \Rightarrow (2): This follows from [13, Theorem 46.7]. (2) \Rightarrow (3): This follows from [13, Theorem 46.5 and Theorem 46.7]. (3) \Rightarrow (1): This follows from Proposition 3.7 and above remark.

We denote by $\mathcal{D}_f(R)$ the set of all finite type v-ideals of an integral domain R. The other notations below follow from [8].

PROPOSITION 3.9. Let S be an lcm splitting multiplicative set for an integral domain R. Then R is a G-GCD domain (resp., a v-domain) if and only if R_S is a G-GCD domain (resp., a v-domain).

Proof. Let S be an lcm splitting multiplicative set with the m-complement S'. By [8, Theorem 3.7] we have an isomorphism $\mathscr{D}_f(R) \to \mathscr{D}_f(R_S) \oplus_C \mathscr{D}_f(R_{S'})$ that takes Inv(R) (resp., $Inv_v(R)$) to $Inv(R_S) \oplus_C Inv(R_{S'})$ (resp., $Inv_v(R_S) \oplus_C Inv_v(R_{S'})$). It follows from [8, Theorem 4.1] that $R_{S'}$ is a GCD-domain. Thus $\mathscr{D}_f(R_{S'}) = Inv(R_{S'}) = Inv_v(R_S) = P(R_{S'})$. Thus R is a G-GCD domain if and only if $\mathscr{D}_f(R_S) = Inv(R_S)$ if

and only if R_S is a G-GCD domain. Also, R is a v-domain if and only if $\mathscr{D}_f(R_S) = Inv_v(R_S)$ if and only if R_S is a v-domain.

COROLLARY 3.10. Let D be an integral domain, I a proper ideal of D, and $R = D[It, t^{-1}]$. Assume that t^{-1} is prime in R and $\cap I^n = \{0\}$. Then R is a G-GCD domain (resp., a PVMD, a v-domain) if and only if D is a G-GCD domain (resp., a PVMD, a v-domain).

Proof. Let S be the saturated multiplicative set generated by the prime t^{-1} in R. Then S is an lcm splitting multiplicative set. Thus the assertions follow immediately from Proposition 3.9.

References

- D. D. Anderson and D. F. Anderson, Generalized GCD domains, Comment Math. Univ. St. Paul. XXVIII-2 (1979), 215–221.
- [2] ______, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), 196-215.
- [3] ______, Elasticity of factorizations in integral domains II, Houston J. Math. 20 (1994), no. 1, 1–15.
- [4] _____, The ring $R[X, \frac{\tau}{X}]$, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York 171 (1995), 95–113.
- [5] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains. J. Pure Appl. Algebra 69 (1990), 1–19.
- [6] _____, Rings between D[X] and K[X], Houston Math. J. 17 (1991), 109–129.
- [7] _____, Factorization in integral domains, II., J. Algebra **152** (1992), 78–93.
- [8] ______, Splitting the t-class group, J. Pure Appl. Algebra, **74** (1991), 17–37.
- [9] D. D. Anderson and B. Mullins, Finite factorization domains, Proc. Amer. Math. Soc. 124 (1996), no. 2, 389–396.
- [10] D. F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), no. 1, 79–106.
- [11] P. M. Cohn, Bézout rings and their subrings, Proc. Camb. Phil. Soc. 64 (1968), 251–264.
- [12] R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973.
- [13] R. Gilmer, *Multiplicative Ideal Theory*, Queen's Papers in Pure and Appl. Math. **90**, Queen's University, Kingston, Ontario, 1992.
- [14] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
- [15] J. L. Mott, The group of divisibility of Rees rings, Math. Japon. 20 (1975), 85–87.
- [16] D. G. Whitman, A note on unique factorization in Rees rings, Math. Japon. 17 (1972), 13–14.
- [17] A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc. 82 (1976), 721–724.

HWANKOO KIM, INFORMATION SECURITY MAJOR, DIVISION OF COMPUTER ENGINEERING, HOSEO UNIVERSITY, ASAN 336-795, KOREA

E-mail: hkkim@office.hoseo.ac.kr

Tae In Kwon, Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea

 $\hbox{\it E-mail: $taekwon@sarim.changwon.ac.kr}$

Young Soo Park, Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

E-mail: yngspark@knu.ac.kr