SEMISTAR G-GCD DOMAINS

Wafa Gmiza and Sana Hizem

Abstract

Let \star be a semistar operation on the integral domain D. In this paper, we prove that D is a G- $\widetilde{\star}$-GCD domain if and only if $D[X]$ is a G- $\star_{1}-$ GCD domain if and only if the Nagata ring of D with respect to the semistar operation $\widetilde{\star}, N a\left(D, \star_{f}\right)$ is a G-GCD domain if and only if $N a\left(D, \star_{f}\right)$ is a GCD domain, where \star_{1} is the semistar operation on $D[X]$ introduced by G. Picozza [12].

1. Introduction

Let D be an integral domain with quotient field K. Let $\bar{F}(D)$ be the set of all nonzero D-submodules of $K, \digamma(D)$ be the set of all nonzero fractional ideals of D and $f(D)$ be the set of all nonzero finitely generated D-submodules of K.

Semistar operations were first defined in 1994 by A. Okabe and R. Matsuda [10] as an extension of the classical star operations.

A semistar operation on D is a map $\star: \bar{F}(D) \rightarrow \bar{F}(D) ; E \mapsto E^{\star}$ such that for all $x \in K \backslash\{0\}$ and for all $E, F \in \bar{F}(D)$, the following properties are satisfied:
(1) $(x E)^{\star}=x E^{\star}$.
(2) If $E \subseteq F$, then $E^{\star} \subseteq F^{\star}$.
(3) $E \subseteq E^{\star}$ and $E^{\star \star}:=\left(E^{\star}\right)^{\star}=E^{\star}$.

For every $E \in \bar{F}(D)$, set $E^{\star_{f}}=\cup\left\{F^{\star} \mid F \in f(D)\right.$ and $\left.F \subseteq E\right\}, \star_{f}$ is a semistar operation on D called the semistar operation of finite type associated to \star. A semistar operation is said to be of finite type whenever $\star=\star_{f}$. Let $*_{1}$ and $*_{2}$ be two semistar operations on D, we say that $*_{1} \leqslant *_{2}$ if $E^{*_{1}} \subseteq E^{*_{2}}$ for each $E \in \bar{\digamma}(D)$, or, equivalently, if $\left(E^{*_{1}}\right)^{*_{2}}=\left(E^{*_{2}}\right)^{*_{1}}=E^{*_{2}}$. Let \star be a semistar operation on D and I be a nonzero ideal of D, we say that I is a quasi-ᄎ-ideal if $I=I^{\star} \cap D$ and we say that I is a quasi-*-maximal ideal if I is a maximal element in the set of proper quasi- \star-ideals. We denote by $M(\star)$ the set of quasi- \star-maximal ideals of D. If \star is a non trivial semistar operation $\left(D^{\star} \neq K\right)$

[^0]of finite type, then each proper quasi- $\begin{gathered}\text {-ideal is contained in a quasi- }- \text {-maximal }\end{gathered}$ ideal [5, Lemma 4.20].

Let \star be a semistar operation on D, we denote by $\widetilde{\star}$, the semistar operation defined by $\widetilde{\star}: \bar{F}(D) \rightarrow \bar{F}(D) ; E \mapsto E^{\widetilde{\star}}:=\cup\left\{E: J \mid J^{\star_{f}}=D^{\star_{f}}\right\}$. Let $I \in$ $\digamma(D)$, we denote by $I^{-1}=\{x \in K \mid x I \subseteq D\}$ and $I_{v}=\left(I^{-1}\right)^{-1}$. If \star is a semistar operation on D, we say that I is \star-invertible if $\left(I I^{-1}\right)^{\star}=D^{\star}$ and I is called \star_{f}-locally principal if for each $M \in M\left(\star_{f}\right)$ there exists $x \in D$ such that $I D_{M}=x D_{M}$.

Let I be a nonzero fractional ideal of D, we say that I is a \star-principal ideal if there exists $x \in K$ such that $I^{\star}=x D^{\star}$.

Let \star be a semistar operation on the integral domain D. By [4], we say that D is \star-GCD if for each $a, b \in D \backslash\{0\},(a, b)_{v}$ is $\widetilde{\star}$-principal and we say that D is G- \star-GCD if for each $a, b \in D \backslash\{0\}, a D \cap b D$ is \star_{f}-invertible.

For a semistar operation \star on $D, \mathrm{~S}$. El. Baghdadi in [4], proved the analogues of classical properties of GCD rings and G-GCD rings. He proved that D is \star GCD if and only if for all $I \in f(D), I_{v}$ is a $\tilde{\star}$-principal ideal and D is G-ネ-GCD if and only if for all $I \in f(D), I_{v}$ is a \star_{f}-invertible ideal.

In Section 2 of this paper, we show that D is G- - GCD if and only if $D[X]$ is G- $\star_{1}-\mathrm{GCD}$, where \star_{1} is the semistar operation on $D[X]$ introduced by G. Picozza [12]. We generalize some classical results in the context of semistar operations. We prove among others, that if \star is a semistar operation on D, $I \in f(D)$ and if D^{\star} is integrally closed, then $(I: I)^{\star}=D^{\star}$, and if L is a localizing system of $D, f, g \in K[X] \backslash\{0\}$ and if $D^{\star_{L}}$ is integrally closed, then $\left(D: c_{D}(f) c_{D}(g)\right)^{\star_{L}}=\left(D: c_{D}(f g)\right)^{\star_{L}}$, where \star_{L} is the semistar operation on D associated to L [5, Proposition 2.4]. Let (H) be the following property: for every family $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ of fractional ideals of D with nonzero intersection, we have $\left(\cap_{\lambda \in \Lambda} I_{\lambda}\right)^{\star}=\underset{\lambda \in \Lambda}{\cap} I_{\lambda}^{\star}$. We prove that if $D^{\widetilde{\star}}$ is integrally closed and D satisfies the property (H), then for each $I \in f(D[X])$ there exist $g \in D[X] \backslash\{0\}$ and $N \in f(D)$ such that $\left(I_{v}\right)^{\star_{1}}=g\left(N[X]_{v}\right)^{\star_{1}}=g\left(N_{v}\right)^{\tilde{\star}}[X]$. As a consequence, we get the main result of this paper: if \star is a semistar operation satisfying the property (H), then D is G- $\widetilde{\star}$-GCD if and only if $D[X]$ is G- $\star_{1}-\mathrm{GCD}$.

In Section 3, we prove that D is G- $\widetilde{\star}$-GCD if and only if $N a\left(D, \star_{f}\right)$ is GGCD if and only if $N a\left(D, \star_{f}\right)$ is GCD, where $N a\left(D, \star_{f}\right)$ is the Nagata ring associated to \star_{f}.

2. G-ネ-GCD polynomial rings

We recall some definitions and properties related to semistar operations. It is clear that any semistar operation satisfies the following axioms: for all $E, F \in \bar{F}(D)$
(1) $(E F)^{\star}=\left(E F^{\star}\right)^{\star}=\left(E^{\star} F\right)^{\star}=\left(E^{\star} F^{\star}\right)^{\star}$.
(2) $(E+F)^{\star}=\left(E^{\star}+F\right)^{\star}=\left(E+F^{\star}\right)^{\star}=\left(E^{\star}+F^{\star}\right)^{\star}$.
(3) For every subset $\left(E_{\alpha}\right)_{\alpha \in \wedge} \subseteq \bar{F}(D), \cap_{\alpha \in \wedge} E_{\alpha}^{\star}=\left(\cap_{\alpha \in \wedge} \mathrm{E}_{\alpha}^{\star}\right)^{\star}$, if

$$
\cap_{\alpha \in \wedge} E_{\alpha}^{\star} \neq(0)
$$

The identity is a semistar operation on D, denoted by d_{D}. The map

$$
\begin{aligned}
\star: & \bar{\digamma}(D) \longrightarrow \bar{\digamma}(D) \\
& E \longmapsto E^{e}=K
\end{aligned}
$$

is a semistar operation called the trivial semistar operation.
Let \star be a semistar operation on D. An ideal I of D is called a quasi- \star-ideal of D if $I=I^{\star} \cap D$, it is easy to see that, for any ideal I of D, the ideal $I^{\star} \cap D$ is a quasi- \star-ideal. An ideal is said to be a quasi- \star-prime, if it is prime and a quasi-×-ideal.

A quasi- \star-maximal ideal is an ideal that is a maximal element in the set of quasi- \star-prime ideals. If \star is a non trivial semistar operation of finite type, then each proper quasi-ᄎ-ideal is contained in a quasi- \star-maximal ideal [5, Lemma 4.20].

Recall from [5], that a localizing system of D is a family L of ideals of D such that:
$\left(L S_{1}\right)$ If $I \in L$ and J is an ideal of D such that $I \subseteq J$, then $J \in L$.
$\left(L S_{2}\right)$ If $I \in L$ and J is an ideal of D such that $\left(J:_{D} i D\right) \in L$ for each $i \in I$, then $J \in L$.

A localizing system L is finitely generated if for each $I \in L$, there exists a finitely generated ideal $J \in L$ such that $J \subseteq I$. If L is a localizing system, and $I, J \in L$, then $I \cap J \in L$ and $I J \in L$.

A semistar operation \star is stable if $(E \cap F)^{\star}=E^{\star} \cap F^{\star}$ for each $E, F \in \bar{F}(D)$. The relation between localizing systems and stable semistar operations has been investigated by M. Fontana and J. Huckaba in [5]. We recall the following results from [5]:

Proposition 2.1. Let D be an integral domain.
(1) Let \star be a semistar operation on D and $L^{\star}=\{I$ ideal of D such that $\left.I^{\star}=D^{\star}\right\}$, then L^{\star} is a localizing system (called the localizing system associated to \star).
(2) Let L be a localizing system. The map:

$$
\begin{aligned}
\star_{L}: & \bar{\digamma}(D) \longrightarrow \bar{\digamma}(D) \\
& E \longmapsto E^{\star_{L}}=\cup\left\{E:_{K} J, \quad J \in L\right\}
\end{aligned}
$$ is a stable semistar operation on D.

(3) Let \star be a semistar operation of finite type. Then L^{\star} is a finitely generated localizing system.
(4) Let L be a finitely generated localizing system. Then \star_{L} is a semistar operation of finite type.
(5) Let \star be a semistar operation on D. Then $\star_{L^{\star}}=\star$ if and only if \star is stable.

If \star is a semistar operation, the map $\tilde{\star}:=\star_{L^{\star} f}$ is a semistar operation associated to the localizing system $L^{\star_{f}}$. $\tilde{\star}$ is a stable semistar operation of finite type on $\underset{\sim}{D}$, and for $E \in \bar{F}(D), E^{\widetilde{\star}}=\cap\left\{E D_{M} \mid M \in M\left(\star_{f}\right)\right\}$ [12].

By [5], $\star=\widetilde{\star}$ if and only if \star is stable of finite type. Recall from [8], that if $E \in \bar{F}(D)$ we say that E is a \star-finite ideal if there exists $F \in f(D)$ such that $E^{\star}=F^{\star}$. In particular, if E is \star_{f}-finite, then it is \star-finite. We notice that, in the previous definition of a \star-finite ideal, we do not require that $F \subseteq E$. Notice that, E is \star_{f}-finite if and only if there exists $F \in f(D)$ and $F \subseteq E$ such that $F^{\star}=E^{\star}$. Let D be an integral domain, T be an overring of $D, i: D \rightarrow T$ be the canonical embedding of D in T and \star be a semistar operation on D. By [6], the map $\star_{i}: \bar{F}(T) \rightarrow \bar{F}(T), E \mapsto E^{\star_{i}}:=E^{\star}$ is a semistar operation on T.

Lemma 2.2. Let \star be a semistar operation on the integral domain D, and let $I \in f(D)$. If D^{\star} is integrally closed, then $(I: I)^{\star}=D^{\star}$.
Proof. Because $D \subseteq I: I, D^{\star} \subseteq(I: I)^{\star}$. Conversely, since D^{\star} is integrally closed, $D^{\star}=\cap\left\{V_{\alpha} \mid V_{\alpha}\right.$ is a valuation overring of $\left.D^{\star}\right\}$. Let $x \in I: I$ and V_{α} be a valuation overring of D^{\star}, then $x I V_{\alpha} \subseteq I V_{\alpha}$. Since $I \in f(D)$, there exists $a \in K \backslash\{0\}$ such that $I V_{\alpha}=a V_{\alpha}$. Hence $x a V_{\alpha} \subseteq a V_{\alpha}$ which implies that $x \in D^{\star}$.

Lemma 2.3. Let D be an integral domain, L be a localizing system of D, $I \in \bar{F}(D)$ and $J \in f(D)$. Then $(I: J)^{\star_{L}}=\left(I^{\star_{L}}: J\right)$.
Proof. Let $x \in(I: J)^{\star_{L}}$, there exists $F \in L$ such that $x F \subseteq I: J$, so $x \in I^{\star_{L}}: J$. Conversely, let $x \in I^{\star_{L}}: J$. Since $J \in f(D)$, there exists $F \in L$ such that $x J F \subseteq I$ then $x \in(I: J)^{\star}$.

Proposition 2.4 ([12]). Let D be an integral domain and L be a localizing system of D. Let X be an indeterminate on D.
(1) $L[X]:=\{I$ ideal of $D[X] \mid J D[X] \subset I$ for some $J \in L\}$ is a localizing system of $D[X]$ and $L[X]=\{I$ ideal of $D[X]$ such that $I \cap D \in L\}$.
(2) If L is a finitely generated localizing system of D, then $L[X]$ is a finitely generated localizing system of $D[X]$.

Let D be an integral domain and L be a localizing system of D. Let X be an indeterminate on D. G. Picozza in [12], defined the following semistar operation on $D[X]$:

$$
\begin{aligned}
*: & \bar{\digamma}(D[X]) \longrightarrow \bar{\digamma}(D[X]) \\
& E \longmapsto(E)^{*}:=\cup\{E: J[X] \mid J \in L\}
\end{aligned}
$$

It is clear that $*$ is a stable semistar operation on $D[X]$.
Remark 2.5. (1) Let $I \in \bar{F}(D)$ then $(I[X])^{*}=I^{\star L}[X]$. Indeed, let $f \in(I[X])^{*}$, there exists $F \in L$ such that $f F \subseteq I[X]$ which implies that $f \in K[X]$. Set $f=\sum_{i=0}^{n} a_{i} X^{i}$ with $a_{i} \in K$ then $a_{i} F \subseteq I$ so, $a_{i} \in I^{\star L}$ for each $i \in\{0, \ldots, n\}$. Hence $f \in I^{\star L}[X]$. Conversely, let $f=\sum_{i=0}^{n} a_{i} X^{i} \in I^{\star L}[X] \subseteq K[X]$, there
exists $F \in L$ such that $a_{i} F \subseteq I$ for each $i \in\{0, \ldots, n\}$. Hence $a_{i} X^{i} \subseteq(I[X])^{*}$ and $f \in(I[X])^{*}$.
(2) If \star is a semistar operation on the integral domain D, then $\star_{1}=\star_{L^{\star} f}[X]$ is a stable semistar operation of finite type on $D[X]$.
Lemma 2.6 ([13, Lemme 1]). Let D be an integral domain and $f, g \in K[X]$. If D is integrally closed, then $(c(f) c(g))^{-1}=(c(f g))^{-1}$.

Lemma 2.7. Let D be an integral domain, L be a localizing system of D and $f, g \in K[X]$. If $D^{\star_{L}}$ is an integrally closed domain, then $\left(D: c_{D}(f) c_{D}(g)\right)^{\star_{L}}=$ $\left(D: c_{D}(f g)\right)^{\star_{L}}$.
Proof. Let $R=D^{\star_{L}}$. By Lemma 2.6, $\left(c_{R}(f) c_{R}(g)\right)^{-1}=\left(c_{R}(f g)\right)^{-1}$. But $c_{R}(f)=c_{D}(f) R$ implies that $\left(c_{D}(f) c_{D}(g) R\right)^{-1}=\left(c_{D}(f g) R\right)^{-1}$. That is to say $\left(D^{\star_{L}}: c_{D}(f) c_{D}(g) D^{\star_{L}}\right)=\left(D^{\star_{L}}: c_{D}(f g) D^{\star_{L}}\right)$. So $\left(D^{\star_{L}}: c_{D}(f) c_{D}(g)\right)=$ $\left(D^{\star_{L}}: c_{D}(f g)\right)$ and by Lemma 2.3, $\left(D: c_{D}(f) c_{D}(g)\right)^{\star_{L}}=\left(D: c_{D}(f g)\right)^{\star_{L}}$.

Lemma 2.8 ([13, Lemme 3]). Let I be a divisorial ideal of $D[X]$ such that $J=$ $I \cap K \neq(0)$, let $B=D[X]$. Then $J=\cap\left\{d\left(D:_{K} c(g)\right) \mid I \subseteq B c g^{-1}, d \in D \backslash\{0\}\right.$ and $g \in B\}$.

Lemma 2.9. Let \star be a semistar operation on the integral domain D satisfying the property (H) : whenever $\left(I_{\alpha}\right)_{\alpha \in \Lambda}$ is a family of fractional ideals of D with nonzero intersection, $\left(\cap_{\alpha \in \Lambda} I_{\alpha}\right)^{\widetilde{\star}}=\bigcap_{\alpha \in \Lambda} I_{\alpha}^{\star}$. Let $I \in \digamma(D)$. Then
(1) $\left(I^{-1}\right)^{\widetilde{\star}}=\left(I^{\widetilde{\star}}\right)^{-1}$.
(2) $\left(I_{v}\right)^{\widetilde{\star}}=\left(I^{\widetilde{\star}}\right)_{v}$.

Proof. (1) Let $x \in\left(I^{-1}\right)^{\star}$, there exists $F \in L^{\star}{ }_{f}$ such that $x F \subseteq I^{-1}$. Hence $x I \subseteq D^{\star}$ and $x \in\left(I^{\star}\right)^{-1}$. Conversely, since \star satisfies the property (H), $\left(I^{-1}\right)^{\widetilde{\star}}=\bigcap_{a \in I} a^{-1} D^{\widetilde{\star}}$ and $\left(I^{\widetilde{ }}\right)^{-1}=\bigcap_{a \in I^{\widetilde{\star}}} a^{-1} D^{\widetilde{\star}}$. As $I \subseteq I^{\widetilde{\star}}$ we have $\left(I^{-1}\right)^{\widetilde{\star}} \supseteq$ $\left(I^{\widetilde{\star}}\right)^{-1}$.
(2) $\left(I_{v}\right)^{\widetilde{\star}}=\left(\left(I^{-1}\right)^{-1}\right)^{\widetilde{\star}}=\left(\left(I^{-1}\right)^{\widetilde{\star}}\right)^{-1}=\left(\left(I^{\widetilde{\star}}\right)^{-1}\right)^{-1}=\left(I^{\widetilde{\star}}\right)_{v}$.

Examples 2.10. (1) Let D be an integral domain and e be the following semistar operation:

$$
\begin{aligned}
e: & \bar{F}(D) \longrightarrow \bar{F}(D) \\
& E \longmapsto E^{e}=K
\end{aligned}
$$

e is a stable semistar operation of finite type and satisfies the property (H).
(2) Recall from [14, Definition 4.1] that, if D is an integral domain and Θ is a set of overrings of D such that the quotient field of D is not in Θ, we say that Θ is a Jaffard family on D if for every integral ideal I of D,

- $D=\underset{T \in \Theta}{\cap} T$.
- Θ is locally finite. (i.e., if every $x \in D \backslash\{0\}$ is a nonunit in only finitely many $T \in \Theta$.)
- $I=\cap_{T \in \Theta}^{\cap}(I T \cap D)$.
- If $T \neq S$ are in Θ, then $(I T \cap D)+(I S \cap D)=D$.

Let D be an integral domain, Θ be a Jaffard family on D and $T \in \Theta$ such that $T \neq D$. As T is a flat overring of D, the following semistar operation

$$
\begin{aligned}
\star: & \bar{\digamma}(D) \longrightarrow \bar{F}(D) \\
& E \longmapsto E^{\star}=E T
\end{aligned}
$$

is a stable semistar operation of finite type on D and $\star \neq d$. By [14, Proposition 4.5], for each family $\left(I_{\alpha}\right)_{\alpha \in \Lambda}$ of D-submodules of K with nonzero intersection, $\left(\cap_{\alpha \in \Lambda} I_{\alpha}\right) T=\bigcap_{\alpha \in \Lambda} I_{\alpha} T$. Hence $\left(\cap_{\alpha \in \Lambda} I_{\alpha}\right)^{\star}=\bigcap_{\alpha \in \Lambda}\left(I_{\alpha}^{\star}\right)$.
(3) Recall from [11], that a domain D has finite character if each nonzero element of D is contained in at most finitely many maximal ideals of D. We say that D is h-local if D has finite character and each nonzero prime ideal of D is contained in a unique maximal ideal of D. By [11, Example 3.2], there exists a non local domain D such that D is h-local and every maximal ideal of D has height 2. By [14, Page 8], $\left\{D_{M} \mid M \in \operatorname{Max}(D)\right\}$ is a Jaffard family. Let $N \in \operatorname{Max}(D)$, the following semistar operation

$$
\begin{aligned}
\star_{\left\{D_{N}\right\}}: & \bar{\digamma}(D) \longrightarrow \bar{\digamma}(D) \\
& E \longmapsto E^{\star\left\{D_{N}\right\}}=E D_{N}
\end{aligned}
$$

is a stable semistar operation of finite type, $\star_{\left\{D_{N}\right\}} \neq d$ and $\star_{\left\{D_{N}\right\}}$ satisfies the property (H).

Theorem 2.11. Let \star be a semistar operation on the integral domain D such that whenever $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ is a family of fractional ideals of D with nonzero intersection, we have $\left(\cap_{\alpha \in \Lambda} I_{\alpha}\right)^{\widetilde{\star}}=\cap_{\alpha \in \Lambda} I_{\alpha}^{\widetilde{\star}}$. Suppose that $D^{\widetilde{\star}}$ is integrally closed. Let $I \in f(D[X])$. Then there exist $g \in D[X] \backslash\{0\}$ and $N \in f(D)$ such that $\left(I_{v}\right)^{\star_{1}}=g\left((N[X])_{v}\right)^{\star_{1}}=g\left(N_{v}\right)^{\star}[X]$.
Proof. Since $I \in f(D[X])$, there exists $g \in D[X] \backslash\{0\}$ such that $g I^{-1} \subseteq D[X]$. Hence $1 \in\left(g^{-1} I\right)_{v}$. Let $J=\left(g^{-1} I\right)_{v}, J$ is a divisorial ideal of $D[X]$ and $J \cap K \neq(0)$. By Lemma 2.8, $J \cap K=\cap\left\{d(D: c(h)) \mid J \subseteq B d h^{-1}, d \in D \backslash\{0\}\right.$ and $h \in B\}$, where $B=D[X]$. Let $H=\cap\left\{d(D: c(h)) \mid J \subseteq B d h^{-1}, d \in D \backslash\{0\}\right.$ and $h \in B\}$. H is a divisorial ideal of D. Indeed, $H \subseteq J$ which implies that $H[X] \subseteq J$. So $H_{v}[X] \subseteq J_{v}$ and again $H_{v} \subseteq J \cap K=H$. We prove that $J^{\star_{1}}=(H B)^{\star_{1}}$. As $H \subseteq J, H B \subseteq J$ hence $(H B)^{\star_{1}} \subseteq J^{\star_{1}}$. Conversely, let $f \in J, d \in D \backslash\{0\}$ and $h \in B$ such that $J \subseteq B d h^{-1}$. Then $c(f h) \subseteq d D$ and $d^{-1} \in D: c(f h)$. Since $D^{\widetilde{\star}}$ is integrally closed, $(D: c(f h))^{\widetilde{\star}}=(D: c(f) c(h))^{\widetilde{\star}}$. So there exists $F \in L^{\star_{f}}$ such that $d^{-1} F \subseteq D: c(f) c(h)$ hence $c(f) \subseteq \cap\{d(D$: $\left.c(h))^{\widetilde{\star}} \mid J \subseteq B d h^{-1}, d \in D \backslash\{0\}\right\}$. By hypothesis, $c(f) \subseteq H^{\widetilde{\star}}$ and $f \in H^{\widetilde{\star}} B=$ $(H B)^{\star_{1}}$. Consequently $g^{-1} I \subseteq(H B)^{\star_{1}}$. As I is a finitely generated submodule of B, there exist a finitely generated ideal F of $D, F \in L^{\star_{f}}$ and a finitely generated D-submodule N of K such that $N \subseteq H$ and $g^{-1} I F \subseteq N B$. So
$g^{-1}(I F)_{v} \subseteq(N B)_{v}$ which implies that $g^{-1} I_{v} F \subseteq(N B)_{v}$. Hence $g^{-1} I_{v} \subseteq$ $\left((N B)_{v}\right)^{\star_{1}}$, that is to say $J^{\star_{1}} \subseteq\left((N B)_{v}\right)^{\star_{1}}$. Conversely, as $N \subseteq H$ then $(N B)_{v} \subseteq(H B)_{v}$. Since H is a divisorial ideal of $D, H B$ is a divisorial ideal of B. Therefore $(N B)_{v} \subseteq H B$ which implies that $\left(g^{-1} I_{v}\right)^{\star_{1}}=J^{\star_{1}}=\left((N B)_{v}\right)^{\star_{1}}$. Hence $\left(I_{v}\right)^{\star_{1}}=g\left((N B)_{v}\right)^{\star_{1}}$.

Definition 2.12. Let \star be a semistar operation on the integral domain D.
(1) An ideal I of D is called \star-invertible if $\left(I I^{-1}\right)^{\star}=D^{\star}$.
(2) We say that D is a generalized \star-GCD domain (G- \star-GCD) if the intersection of two principal ideals $a D \cap b D$ is \star_{f}-invertible for all $0 \neq a, b \in D$.

Theorem 2.13 ([4, Theorem 4.10]). Let \star be a semistar operation on the integral domain D. The following are equivalent:
(1) D is a $G-\star-G C D$ domain, that is, $a D \cap b D$ is $a \star_{f}$-invertible ideal of D for all $a, b \in D \backslash\{0\}$.
(2) For all $I \in f(D),(D: I)$ is $a \star_{f}$-invertible ideal of D.
(3) For all $I \in f(D), I_{v}$ is $a \star_{f}$-invertible ideal of D.

Remark 2.14. (1) If D is a G- - -GCD domain, then D^{\approx} is an integrally closed domain. Indeed, since D is a G-*-GCD domain, by [4, Remark 4.11(1)], D_{M} is a GCD domain for each $M \in M\left(\star_{f}\right)$. So, D_{M} is a G-GCD domain for each $M \in M\left(\star_{f}\right)$. By [2, Corollary 1], D_{M} is integrally closed. As $D^{\widetilde{\star}}=\cap\left\{D_{P} \mid P \in\right.$ $\left.M\left(\star_{f}\right)\right\}$ then $D^{\widetilde{\star}}$ is an integrally closed domain.
(2) Let $*_{1}$ and $*_{2}$ be two semistar operations on D such that $*_{1} \leqslant *_{2}$. If D is a G- $*_{1}$-GCD domain, then D is a G- $*_{2}$-GCD domain. Indeed, let $I \in f(D)$. Since D is a G-* $*_{1}$ GCD domain, I_{v} is $*_{1}$-invertible so $\left(I_{v} I^{-1}\right)^{*_{1}}=D^{*_{1}}$ and $D^{*_{2}}=\left(D^{*_{1}}\right)^{*_{2}}=\left(\left(I_{v} I^{-1}\right)^{*_{1}}\right)^{*_{2}}=\left(I_{v} I^{-1}\right)^{*_{2}}$.

Theorem 2.15. Let \star be a semistar operation satisfying the property (H). Then D is a $G-\overparen{\star}-G C D$ domain if and only if $D[X]$ is a $G-\star_{1}-G C D$ domain.

Proof. Suppose that D is a G- $\widetilde{\star}$-GCD domain, we prove that $D[X]$ is a G- $\star_{1}-$ GCD domain. Let $I \in f(D[X])$. By Remark $2.14, D^{\widetilde{*}}$ is an integrally closed domain. By Theorem 2.11, there exist $N \in f(D)$ and $g \in D[X] \backslash\{0\}$ such that $\left(I_{v}\right)^{\star_{1}}=g\left(N^{\widetilde{\star}}\right)_{v}[X]$. As $I \subseteq\left(I_{v}\right)^{\star_{1}}$ then $\left(g\left(N^{\widetilde{\star}}\right)_{v} D[X]\right)^{-1} \subseteq\left(I D^{\widetilde{\star}}[X]\right)^{-1}$. But $\left(g\left(N^{\widetilde{\star}}\right)_{v}[X]\right)^{-1}=g^{-1}\left(N^{\widetilde{\star}}\right)^{-1}[X]$. On the other hand, $\left(I D^{\widetilde{\star}}[X]\right)^{-1}=\left(I^{-1}\right)^{\star 1}$. Indeed, let $f \in D^{\widetilde{\star}}[X]: I D^{\widetilde{\star}}[X]$ then $f I \subseteq D^{\widetilde{\star}}[X]=(D[X])^{\star 1}$. Since I is a finitely generated submodule of $D[X]$, there exists $F \in L^{\star_{f}}$ such that $f I F \subseteq D[X]$. Hence $f \in\left(I^{-1}\right)^{\star_{1}}$. Conversely, let $f \in\left(I^{-1}\right)^{\star_{1}}$, there exists $F \in L^{\star_{f}}$ such that $f F \subseteq I^{-1}$ which implies that $f \in\left(I D^{\widetilde{\star}}[X]\right)^{-1}$. Therefore $g^{-1}\left(N^{\star}\right)^{-1}[X] \subseteq\left(I^{-1}\right)^{\star 1}$ and again $\left(I_{v} g^{-1}\left(N^{\widetilde{ }}\right)^{-1}[X]\right)^{\star_{1}} \subseteq\left(I_{v} I^{-1}\right)^{\star_{1}}$. As $\left.\left(I_{v} g^{-1}\left(N^{\widetilde{\star}}\right)^{-1}[X]\right)^{\star_{1}}=\left(\left(g(N[X])_{v}\right)^{\star_{1}} g^{-1} N^{\widetilde{ }}\right)^{-1}[X]\right)^{\star_{1}}=\left(N_{v} N^{-1}[X]\right)^{\star_{1}}=$ $\left(N_{v} N^{-1}\right)^{\star}[X]$ and D is a G- $\widetilde{\star}$-GCD domain, $\left(I_{v} I^{-1}\right)^{\star_{1}}=(D[X])^{\star_{1}}$ that is to say I_{v} is \star_{1}-invertible in $D[X]$. So $D[X]$ is a G- $\star_{1}-\mathrm{GCD}$ domain.

Conversely (this implication does not require the hypothesis (H)). Suppose that $D[X]$ is a G- $\star_{1}-\mathrm{GCD}$ domain. We prove that D is a G- $\widetilde{\star}$-GCD domain. Let $I \in f(D)$ and $J=I[X] \in f(D[X])$ then J_{v} is \star_{1}-invertible. As $J_{v}=I_{v}[X]$, $D^{\widetilde{\star}}[X]=\left(J_{v} J^{-1}\right)^{\star_{1}}=\left(I_{v} I^{-1}\right)^{\widetilde{\star}}[X]$, this leads to $\left(I_{v} I^{-1}\right)^{\widetilde{\star}}=D^{\widetilde{\star}}$.
Corollary 2.16. Let D be an integral domain.
(1) D is a $G-G C D$ domain if and only if $D[X]$ is a $G-G C D$ domain.
(2) D is a $G-w-G C D$ domain if and only if $D[X]$ is a $G-w_{D[X]}-G C D$ domain.

Proof. (1) If $\star=d_{D}$, then $\star_{1}=d_{D[X]}$. Indeed, the localizing system $L^{d_{D}}$ associated to d_{D} is equal to $\{D\}$ then $L^{d_{D}}[X]=\{D[X]\}$. Let $E \in \bar{F}(D[X])$, we have $E^{\left(d_{D}\right)_{1}}=E: D[X]=E=E^{d_{D[X]}}$. So, $\left(d_{D}\right)_{1}=d_{D[X]}$.
(2) If $\star=v$, then $\tilde{\star}=w, v_{f}=t$ and $\star_{1}=\star_{L^{t}[X]}$. If D is G- w-GCD, then $D[X]$ is G- \star_{1}-GCD domain. By [12], $\star_{1} \leq w_{D[X]}$ so, $D[X]$ is G- $w_{D[X]^{-}}$ GCD domain. By [3, Theorem 2.3] and the fact that $M\left(w_{D[X]}\right)=\{Q[X] \mid Q \in$ $M(t)\} \cup\left\{Q \in \operatorname{Spec}(D[X]) \mid Q \cap D=(0)\right.$ and $\left.c(Q)^{t}=D\right\}$ the converse holds.

3. G- \star-GCD Nagata rings

Let \star be a semistar operation on the integral domain D and let $N(\star):=$ $N_{D}(\star):=\left\{h \in D[X] \mid h \neq 0\right.$ and $\left.c(h)^{\star}=D^{\star}\right\} . \quad N(\star)$ is a saturated multiplicative subset of $D[X]$ and $N(\star)=N\left(\star_{f}\right)$. Let $N a(D, \star):=D[X]_{N(\star)}=$ $\left\{\left.\frac{f}{g} \right\rvert\, f, g \in D[X] ; g \neq 0, c(g)^{\star}=D^{\star}\right\}$ be the Nagata ring of D with respect to the semistar operation \star.
Proposition 3.1 ([7, Proposition 3.1]). Let \star be a semistar operation on the integral domain D. Then:
(1) $\operatorname{Max}(N a(D, \star))=\left\{Q[X]_{N(\star)} \mid Q \in M\left(\star_{f}\right)\right\}$.
(2) $N a(D, \star)=\cap\left\{D_{Q}(X) \mid Q \in M\left(\star_{f}\right)\right\}=\cap\left\{D[X]_{Q[X]} \mid Q \in M\left(\star_{f}\right)\right\}$.
(3) $E^{\tilde{\star}}=E N a(D, \star) \cap K$ for each $E \in \bar{F}(D)$.
(4) $N a(D, \star)=N a\left(D, \star_{f}\right)=N a(D, \widetilde{\star})$.

Lemma 3.2. Let D be an integral domain, $P \in \operatorname{Spec}(D)$ and E a nonzero subset of D. If $E D_{P}=a D_{P}$ with $a \in D$, then there exists $x \in E$ such that $E D_{P}=x D_{P}$.

Proof. As $E D_{P}=a D_{P}$, there exist $n \in \mathbb{N}^{*}, a_{i} \in E, b_{i} \in D$ and $s \in D \backslash P$ such that $a=\frac{\sum_{i=1}^{n} a_{i} b_{i}}{s}$. Since $a_{i} \in E$ we get $a_{i} \in a D_{P}$ which implies that there exist $d_{i} \in D$ and $t \in D \backslash P$ such that $a_{i}=a \frac{d_{i}}{t}$. Hence $1=\frac{\sum_{i=1}^{n} d_{i} b_{i}}{s t}$. Since st $\notin P$, there exists $i_{0} \in\{1, \ldots, n\}$ such that $d_{i_{0}} b_{i_{0}} \notin P$. Therefore $\frac{d_{i_{0}}}{t} \in U\left(D_{P}\right)$ and $a D_{P}=a_{i_{0}} D_{P}$.
Theorem 3.3 ([1, Theorem 7]). Let \star be a semistar operation on the integral domain D and $f \in D[X] \backslash\{0\}$ such that $c(f)$ is \star_{f}-locally principal. Then $c(f) N a\left(D, \star_{f}\right)=f N a\left(D, \star_{f}\right)$.

Proof. (The proof uses arguments similar to those used in the proof of Theorem 7 of [1]. But the change of notation requires a new proof.)

Let $f=\sum_{i=0}^{n} a_{i} X^{i}$ with $a_{i} \in D$. Since $c(f)$ is \star_{f}-locally principal, for each $M \in M\left(\star_{f}\right)$ there exists $x \in D$ such that $c(f) D_{M}=x D_{M}$. By Lemma 3.2, there exists $i_{0} \in\{0, \ldots, n\}$ such that $c(f) D_{M}=a_{i_{0}} D_{M}$. As $a_{i} \in a_{i_{0}} D_{M}$, for each $i \in\{0, \ldots, n\}$ there exists $\gamma_{i} \in D_{M}$ such that $a_{i}=a_{i_{0}} \gamma_{i}$. In particular, $\gamma_{i_{0}}=1$. Let $h=\gamma_{0}+\gamma_{1} X+\cdots+\gamma_{n} X^{n}$ then $a_{i_{0}} h=f$ and $c(h) D_{M}=D_{M}$. Hence $h D[X]_{M[X]}=D[X]_{M[X]}$. We get $c(f) D[X]_{M[X]}=a_{i_{0}} h D[X]_{M[X]}=$ $f D[X]_{M[X]}$. Consequently $c(f) \subseteq \cap\left\{f D[X]_{M[X]} \mid M \in M\left(\star_{f}\right)\right\}=f N a\left(D, \star_{f}\right)$. Conversely, since $f \in c(f) D[X] \subseteq c(f) N a\left(D, \star_{f}\right)$, we conclude that

$$
f N a\left(D, \star_{f}\right) \subseteq c(f) N a\left(D, \star_{f}\right) .
$$

Theorem 3.4. Let \star be a semistar operation on the integral domain D and X be an indeterminate on D. Let $f \in D[X]$. Then the following statements are equivalent:
(1) $c(f)$ is \star_{f}-locally principal.
(2) $f N a\left(D, \star_{f}\right)=c(f) N a\left(D, \star_{f}\right)$.
(3) There exists an ideal I of D such that $f N a\left(D, \star_{f}\right)=I N a\left(D, \star_{f}\right)$.
(4) $c(f) N a\left(D, \star_{f}\right)$ is a principal ideal of $N a\left(D, \star_{f}\right)$.
(5) $c(f) N a\left(D, \star_{f}\right)$ is a locally principal ideal of $N a\left(D, \star_{f}\right)$.

Proof. (1) $\Rightarrow(2)$ follows from Theorem 3.3.
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$ Suppose that $f N a\left(D, \star_{f}\right)=I N a\left(D, \star_{f}\right)$ with I an ideal of D. Let $M \in M\left(\star_{f}\right)$. Then $I D[X]_{M[X]}=f D[X]_{M[X]}$. By Lemma 3.2, there exists $a \in I$ such that $f D[X]_{M[X]}=a D[X]_{M[X]}$. As $I N a\left(D, \star_{f}\right)=f N a\left(D, \star_{f}\right) \subseteq$ $c(f) N a\left(D, \star_{f}\right)$ then $I \subseteq c(f) N a\left(D, \star_{f}\right) \cap K=(c(f))^{\widetilde{\star}}$ and again $I \subseteq c(f) D_{M}$. So there exist $b \in c(f)$ and $s \in D \backslash M$ such that $a=\frac{b}{s}$. Hence $f D[X]_{M[X]}=$ $b D[X]_{M[X]}$ which implies that $f \in b D[X]_{M[X]}$. There exist $g \in D[X]$ and $h \in$ $D[X] \backslash M[X]$ such that $f=b \frac{g}{h}$. As $h \notin M[X]$ then $c(h) D_{M}=D_{M}$. By applying the Dedekind-Mertens lemma to f and h we get $c(h)^{m} c(f h)=c(h)^{m+1} c(f)$, where $m=\operatorname{deg}(f)$. Since $c(h) D_{M}=D_{M}$ then $c(f) D_{M}=c(f h) c(h)^{m} D_{M}=$ $c(b g) D_{M} \subseteq b D_{M} \subseteq c(f) D_{M}$.
$(2) \Rightarrow(4)$ and $(4) \Rightarrow(5)$ are clear.
(5) \Rightarrow (1) Suppose that $c(f) N a\left(D, \star_{f}\right)$ is locally principal, we prove that $c(f)$ is \star_{f}-locally principal. Let $M \in M\left(\star_{f}\right)$ and $J=c(f) N a\left(D, \star_{f}\right)$. Then $J N a\left(D, \star_{f}\right)_{M[X]_{N\left(\star_{f}\right)}}$ is a principal ideal of $N a\left(D, \star_{f}\right)_{M[X]_{N\left(\star_{f}\right)}}=D[X]_{M[X]}$. So, $J N a\left(D, \star_{f}\right)_{M[X]_{N\left(\star_{f}\right)}}=c(f) D[X]_{M[X]}$ is a principal ideal of $D[X]_{M[X]}$. By Lemma 3.2, there exists $a \in c(f)$ such that $c(f) D[X]_{M[X]}=a D[X]_{M[X]}$. As $f \in c(f) D[X]_{M[X]}$, there exist $k \in D[X]$ and $h \in D[X] \backslash M[X]$ such that $f=a \frac{k}{h}$. By applying the Dedekind-Mertens lemma to f and $h \in D[X]$, we get $c(h)^{m} c(f h)=c(h)^{m+1} c(f)$, where $m=\operatorname{deg}(f)$. Since $c(h) D_{M}=D_{M}$, then $c(f) D_{M}=c(f h) D_{M} \subseteq a D_{M} \subseteq c(f) D_{M}$.

Corollary 3.5. Let \star be a semistar operation on the integral domain D and I be an ideal of D. Then the following statements are equivalent:
(1) I is $\widetilde{\star}$-finite and \star_{f}-locally principal.
(2) INa($\left.D, \star_{f}\right)$ is a finitely generated, locally principal ideal.
(3) $I N a\left(D, \star_{f}\right)$ is a principal ideal of $N a\left(D, \star_{f}\right)$.

Proof. (1) \Rightarrow (3) Since I is $\widetilde{\star}$-finite, $I^{\widetilde{\star}}=\left(a_{0}, \ldots, a_{n}\right)^{\widetilde{\star}}=c(f)^{\widetilde{\star}}$ with $f=$ $\sum_{i=0}^{n} a_{i} X^{i}$ and $I D_{M}=c(f) D_{M}$ for each $M \in M\left(\star_{f}\right)$. As I is \star_{f}-locally principal then $c(f)$ is \star_{f}-locally principal. On the other hand $I^{\star}=I N a\left(D, \star_{f}\right) \cap K=$ $c(f)^{\widetilde{\star}}=c(f) N a\left(D, \star_{f}\right) \cap K$ so, $c(f) N a\left(D, \star_{f}\right)=I N a\left(D, \star_{f}\right)$. By Theorem 3.4, $c(f) N a\left(D, \star_{f}\right)$ is a principal ideal of $N a\left(D, \star_{f}\right)$.
$(3) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Suppose that $I N a\left(D, \star_{f}\right)$ is a finitely generated and locally principal ideal, there exist $f_{1}, \ldots, f_{n} \in D[X]$ such that

$$
I N a\left(D, \star_{f}\right)=\left(f_{1}, \ldots, f_{n}\right) N a\left(D, \star_{f}\right)
$$

Since $f_{i} \in I N a\left(D, \star_{f}\right)$, there exist $a_{i, j} \in I, f_{i, j} \in D[X]$ and $h_{i} \in N\left(\star_{f}\right)$ such that $f_{i}=\frac{\sum_{j=1}^{m_{i}} a_{i, j} f_{i, j}}{h_{i}}$. Let $J=\left(a_{i, 1}, \ldots, a_{i, m_{i}} \mid i \in\{1, \ldots, n\}\right) \subseteq I$ then $I N a\left(D, \star_{f}\right)=J N a\left(D, \star_{f}\right)$. Hence $I^{\widetilde{\star}}=I N a\left(D, \star_{f}\right) \cap K=J N a\left(D, \star_{f}\right) \cap K=$ $J^{\widetilde{ }}$. Since $J \subseteq I, I$ is $\widetilde{\star}$-finite, let $f=\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} b_{i} X^{i}$. As $I N a\left(D, \star_{f}\right)=$ $c(f) N a\left(D, \star_{f}\right)$ is a locally principal ideal, then by Theorem 3.4, $c(f)$ is $\star_{f}-$ locally principal that is to say $J D_{M}=c(f) D_{M}$ is a principal ideal for each $M \in M\left(\star_{f}\right)$. Since $I^{\widetilde{\star}}=J^{\widetilde{\star}}$, for each $M \in M\left(\star_{f}\right), I D_{M}=J D_{M}$ is a principal ideal which implies that I is a \star_{f}-locally principal ideal.
Proposition 3.6. Let \star be a semistar operation on the integral domain D and $N=\left\{f \in D[X, Y] \mid c_{D}(f)^{\star_{f}}=D^{\star_{f}}\right\}$. Then
(1) $N=D[X, Y] \backslash \cup\left\{M[X, Y] \mid M \in M\left(\star_{f}\right)\right\}$ is a saturated multiplicative subset of $D[X, Y]$.
(2) $D[X, Y]_{N}=N a\left(D, \star_{f}\right)(Y)$ where $N a\left(D, \star_{f}\right)(Y)$ is the Nagata ring of $N a\left(D, \star_{f}\right)$ associated to d.
Proof. (1) Let $f \in N$ then $f \notin M[X, Y]$ for each $M \in M\left(\star_{f}\right)$ so, $f \in D[X, Y] \backslash \cup$ $\left\{M[X, Y] \mid M \in M\left(\star_{f}\right)\right\}$. Conversely, let $f \in D[X, Y] \backslash \cup\{M[X, Y] \mid M \in$ $\left.M\left(\star_{f}\right)\right\}$. If $c(f)^{\star_{f}} \neq D^{\star_{f}}$, there exists $M \in M\left(\star_{f}\right)$ such that $c(f) \subseteq M$ which implies that $f \in M[X, Y]$ which is a contradiction. So $c(f)^{\star_{f}}=D^{\star_{f}}$ and $N=D[X, Y] \backslash \cup\left\{M[X, Y] \mid M \in M\left(\star_{f}\right)\right\}$. Hence N is a saturated multiplicative subset of $D[X, Y]$.
(2) Let $R=N a\left(D, \star_{f}\right)$ and $f \in R(Y)$ so $f=\frac{f_{1}}{f_{2}}$ with $f_{1}, f_{2} \in R[Y], f_{2} \neq 0$ and $c_{R}\left(f_{2}\right)=R$. Let $f_{1}=\frac{\sum_{i=0}^{n} f_{1, i} Y^{i}}{h_{1}}$ with $h_{1} \in D[X], c\left(h_{1}\right)^{\star_{f}}=D^{\star_{f}}$ and $f_{1, i} \in D[X]$. Let $f_{2}=\frac{\sum_{j=0}^{m} f_{2, j} Y^{j}}{h_{2}}$ with $f_{2, j} \in D[X], c\left(h_{2}\right)^{\star_{f}}=D^{\star_{f}}$ and $\left(f_{2,0}, \ldots, f_{2, m}\right)_{N\left(\star_{f}\right)}=c_{R}\left(f_{2}\right)=N a\left(D, \star_{f}\right)$. Let $g=\sum_{j=0}^{m} f_{2, j} Y^{j} \in D[X, Y]$, $c_{N a\left(D, \star_{f}\right)}(g)=N a\left(D, \star_{f}\right)=\left(f_{2,0}, \ldots, f_{2, m}\right)_{N\left(\star_{f}\right)}$, there exists $h \in N\left(\star_{f}\right)$
such that $h \in\left(f_{2,0}, \ldots, f_{2, m}\right) D[X]$. So $c_{D}(h) \subseteq c_{D}\left(f_{2,0}\right)+\cdots+c_{D}\left(f_{2, m}\right)=$ $c_{D}(g) \subseteq D$ which implies that $D^{\star_{f}}=c_{D}(h)^{\star_{f}} \subseteq c_{D}(g)^{\star_{f}} \subseteq D^{\star_{f}}$ and again $c_{D}(g)^{\star_{f}}=D^{\star_{f}}$. Then $g h_{1} \in N$ therefore $f=\frac{\overline{f_{1}}}{f_{2}} \in D[X, \bar{Y}]_{N}$. Conversely, let $f=\frac{f_{1}}{f_{2}} \in D[X, Y]_{N}$ with $f_{1} \in D[X, Y]$ and $f_{2} \in N=D[X, Y] \backslash \cup$ $\left\{M[X, Y] \mid M \in M\left(\star_{f}\right)\right\}$. Let $f_{2}=\sum_{j=0}^{m} f_{2, j} Y^{j}$ with $f_{2, j} \in D[X]$ for each $j \in\{0, \ldots, m\}$. If $c_{N a\left(D, \star_{f}\right)}\left(f_{2}\right) \neq N a\left(D, \star_{f}\right)$, there exists $M \in M\left(\star_{f}\right)$ such that $c_{N a\left(D, \star_{f}\right)}\left(f_{2}\right) \subseteq M[X]_{N\left(\star_{f}\right)}$ which implies that $\left(f_{2,0}, \ldots, f_{2, m}\right) \subseteq M[X]$. Hence $f_{2} \in M[X, Y]$ which is impossible. Then $c_{N a\left(D, \star_{f}\right)}\left(f_{2}\right)=N a\left(D, \star_{f}\right)$ so, $f=\frac{f_{1}}{f_{2}} \in N a\left(D, \star_{f}\right)(Y)$.

Theorem 3.7. Let \star be a semistar operation on the integral domain D and X be an indeterminate on D. Then every nonzero finitely generated and locally principal ideal of $N a\left(D, \star_{f}\right)$ is a principal ideal.
Proof. Let $I=\left(f_{1}, \ldots, f_{n}\right) N a\left(D, \star_{f}\right) \neq 0$ such that I is a locally principal ideal, where $f_{i} \in D[X]$ for each $i \in\{1, \ldots, n\}$. Let $g=f_{1}+f_{2} Y+\cdots+$ $f_{n} Y^{n-1} \in D[X, Y], R=N a\left(D, \star_{f}\right)$ and K_{1} the quotient field of R. So, $c_{R}(g)=$ $\left(f_{1}, \ldots, f_{n}\right) R=I$ is locally principal in R. By Theorem 3.3, $I N a\left(D, \star_{f}\right)(Y)=$ $c_{R}(g) R(Y)=g R(Y)$. By Proposition 3.6, Na(D, $\left.\star_{f}\right)(Y)=D[X, Y]_{N}$ then $I D[X, Y]_{N}=g D[X, Y]_{N}$. Let $m_{i}=\operatorname{deg}\left(f_{i}\right)$ for each $i \in\{1, \ldots, n\}$ and $f=$ $f_{1}+f_{2} X^{m_{1}+1}+f_{3} X^{m_{1}+m_{2}+2}+\cdots+f_{n} X^{m_{1}+\cdots+m_{n-1}+(n-1)} \in D[X]$. Hence $c_{D}(f)=c_{D}(g)$ and $f \in I D[X, Y]_{N}=g D[X, Y]_{N}$, there exist $h_{1} \in D[X, Y]$ and $h_{2} \in N$ such that $f=g \frac{h_{1}}{h_{2}}$. We prove that $c_{D}\left(h_{1}\right)^{\star_{f}}=D^{\star_{f}}$. Suppose that $c_{D}\left(h_{1}\right)^{\star_{f}} \neq D^{\star_{f}}$, there exists $P \in M\left(\star_{f}\right)$ such that $c_{D}\left(h_{1}\right) \subseteq P$. Let (V, M) be a valuation overring of D such that $M \cap D=P$. If $c_{V}\left(h_{2}\right) \subseteq M$, then $c_{D}\left(h_{2}\right) \subseteq M \cap D=P$ which is impossible. As V is a valuation domain, $c_{V}\left(f h_{2}\right)=c_{V}(f) c_{V}\left(h_{2}\right)$. So $c_{V}(f)=c_{V}(f) c_{V}\left(h_{2}\right)=c_{V}\left(g h_{1}\right)=c_{V}(g) c_{V}\left(h_{1}\right)=$ $c_{V}(f) c_{V}\left(h_{1}\right)$. By Nakayama's lemma, either $c_{V}(f)=(0)$ or $c_{V}\left(h_{1}\right)=V$ and since $f \neq 0$ then $c_{V}\left(h_{1}\right)=V$ which is impossible because $c_{V}\left(h_{1}\right)=c_{D}\left(h_{1}\right) V \subseteq$ $P V \subseteq M V=M$. Then $c_{D}\left(h_{1}\right)^{\star_{f}}=D^{\star_{f}}$ and $f N a\left(D, \star_{f}\right)(Y)=f D[X, Y]_{N}=$ $g \frac{h_{1}}{h_{2}} D[X, Y]_{N}=g N a\left(D, \star_{f}\right)(Y)=I(Y)$. Hence $f N a\left(D, \star_{f}\right)=I$.

Proposition 3.8 ([12, Proposition 3.4 and Lemma 3.5]). Let \star be a semistar operation on the integral domain D. Let $*:=\star \triangle$ be the spectral semistar operation on $D[X]$ defined by the set $\triangle:=\left\{P[X] \mid P \in M\left(\star_{f}\right)\right\}$ and let i be the canonical embedding of $D[X]$ in $N a\left(D, \star_{f}\right)$. Then
(1) $\star_{1}:=\star_{L^{\star} f}{ }_{[X]} \leq *$.
(2) $*_{i}=d_{N a\left(D, \star_{f}\right)}$.

Theorem 3.9. Let \star be a semistar operation satisfying the property (H). The following statements are equivalent:
(1) D is a $G-\widetilde{\star}-G C D$ domain.
(2) $D[X]$ is a $G-\star_{1}-G C D$ domain.
(3) $D[X]$ is a $G-*-G C D$ domain.
(4) $N a\left(D, \star_{f}\right)$ is a $G-G C D$ domain.
(5) $N a\left(D, \star_{f}\right)$ is a $G C D$ domain.

Proof. (1) $\Longleftrightarrow(2)$ follows from Theorem 2.15.
$(2) \Longrightarrow(3)$ If $D[X]$ is a $\mathrm{G}-\star_{1}-\mathrm{GCD}$ domain and since $\star_{1} \leq *, D[X]$ is a G-*-GCD domain.
$(3) \Longrightarrow(4)$ If $D[X]$ is a G-*-GCD domain, by $[4, \operatorname{Remark} 4.11(3)],(D[X])^{*}$ is a G- $\widetilde{*}_{i}$-GCD domain. By [9, Lemma 3.8], * is a stable semistar operation of finite type which implies by [12, Proposition 1.5], that $*_{i}$ is a stable semistar operation of finite type. Then $(D[X])^{*}$ is a G-* ${ }_{i}$-GCD domain and by [12, Proposition 1.6(2)], $(D[X])^{*}=N a\left(D, \star_{f}\right)$. Hence $N a\left(D, \star_{f}\right)$ is a G-GCD domain.
(4) $\Longrightarrow(5)$ Let $I \in f\left(N a\left(D, \star_{f}\right)\right)$. Since $N a\left(D, \star_{f}\right)$ is a G-GCD domain, I_{v} is an invertible ideal. So I_{v} is a finitely generated and locally principal ideal of $N a\left(D, \star_{f}\right)$. By Theorem 3.7, I_{v} is a principal ideal of $N a\left(D, \star_{f}\right)$ then $N a\left(D, \star_{f}\right)$ is a GCD domain.
$(5) \Longrightarrow(1)$ If $N a\left(D, \star_{f}\right)$ is a GCD domain, we prove that D is a G- $\widetilde{\star}$ GCD domain. Let $I \in f(D)$ then $\left(I N a\left(D, \star_{f}\right)\right)^{-1}=I^{-1} N a\left(D, \star_{f}\right)$. So $I_{v} N a\left(D, \star_{f}\right)=\left(I N a\left(D, \star_{f}\right)\right)_{v}$. In fact, let $f \in\left(I N a\left(D, \star_{f}\right)\right)_{v}$. Since $N a\left(D, \star_{f}\right)$ is a GCD domain and $I \in f(D),\left(I N a\left(D, \star_{f}\right)\right)^{-1}$ is invertible in $N a\left(D, \star_{f}\right)$. Hence $\left(I N a\left(D, \star_{f}\right)\right)^{-1} \in f\left(N a\left(D, \star_{f}\right)\right)$, there exists $g \in N\left(\star_{f}\right)$ such that $f g\left(I N a\left(D, \star_{f}\right)\right)^{-1}=f g I^{-1} N a\left(D, \star_{f}\right) \subseteq D[X]$ so, $I^{-1} c(f g) \subseteq D$ and $c(f g) \subseteq$ $I_{v} . f g \subseteq I_{v} D[X]$ which implies that $f \in I_{v} N a\left(D, \star_{f}\right)$. Conversely, let $x \in I_{v}$ then $x\left(I N a\left(D, \star_{f}\right)\right)^{-1} \subseteq N a\left(D, \star_{f}\right)$. Hence $x \in\left(I N a\left(D, \star_{f}\right)\right)_{v}$. As $N a\left(D, \star_{f}\right)$ is a GCD domain, $\left(I N a\left(D, \star_{f}\right)\right)_{v}$ is invertible in $N a\left(D, \star_{f}\right)$. Hence

$$
\begin{aligned}
I_{v} I^{-1} N a\left(D, \star_{f}\right) & =N a\left(D, \star_{f}\right) \text { and } \\
\left(I_{v} I^{-1}\right)^{\widetilde{\star}} & =I_{v} I^{-1} N a\left(D, \star_{f}\right) \cap K=N a\left(D, \star_{f}\right) \cap K=D^{\widetilde{\star}}
\end{aligned}
$$

If $\star=d$, then we recover the result of [2, Theorem 2].
Corollary 3.10. Let D be an integral domain. The following statements are equivalent:
(1) D is a $G-G C D$ domain.
(2) $D[X]$ is a $G-G C D$ domain.
(3) $D(X)$ is a $G-G C D$ domain.
(4) $D(X)$ is a GCD domain.

Acknowledgements. The authors would like to thank the referee for his/her valuable comments.

References

[1] D. D. Anderson, Multiplication ideals, multiplication rings, and the ring $R(X)$, Canad. J. Math. 28 (1976), no. 4, 760-768. https://doi.org/10.4153/CJM-1976-072-1
[2] D. D. Anderson and D. F. Anderson, Generalized GCD domains, Comment. Math. Univ. St. Paul. 28 (1980), no. 2, 215-221.
[3] G. W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), no. 1, 484-493. https://doi.org/10.1016/j.jalgebra. 2007.06.010
[4] S. El-Baghdadi, Semistar GCD domains, Comm. Algebra 38 (2010), no. 8, 3029-3044. https://doi.org/10.1080/00927870903114961
[5] M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in NonNoetherian commutative ring theory, 169-197, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
[6] M. Fontana and K. A. Loper, Kronecker function rings: a general approach, in Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 189-205, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
[7] _, Nagata rings, Kronecker function rings, and related semistar operations, Comm. Algebra 31 (2003), no. 10, 4775-4805. https://doi.org/10.1081/AGB120023132
[8] M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (2005), no. 4, 645-664. https://doi.org/10.1142/S1005386705000611
[9] W. Gmiza and S. Hizem, Semistar ascending chain conditions over polynomial rings, Submitted.
[10] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.
[11] B. Olberding, Characterizations and constructions of h-local domains, in Models, modules and abelian groups, 385-406, Walter de Gruyter, Berlin, 2008. https://doi.org/ 10.1515/9783110203035. 385
[12] G. Picozza, A note on semistar Noetherian domains, Houston J. Math. 33 (2007), no. 2, 415-432.
[13] J. Querré, Sur le groupe des classes de diviseurs, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 7, A397-A399.
[14] D. Spirito, Jaffard families and localizations of star operations, to appear in J. Commut. Algebra.

Wafa Gmiza
Department of Mathematics
Faculty of sciences
University of Monastir 5000
Tunisia
Email address: gmiza.wafa@yahoo.com

Sana Hizem

Department of Mathematics
Faculty of sciences
University of Monastir 5000 Tunisia
Email address: hizems@yahoo.fr

[^0]: Received December 20, 2018; Revised March 12, 2019; Accepted April 1, 2019.
 2010 Mathematics Subject Classification. 13F20, 13G05, 13A15, 13E99.
 Key words and phrases. semistar operation, star operation, polynomial ring, Nagata ring.

