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SEMISTAR G-GCD DOMAINS

WAFA GMIZA AND SANA HIZEM

ABSTRACT. Let x be a semistar operation on the integral domain D. In
this paper, we prove that D is a G-*-GCD domain if and only if D[X] is
a G-*x1-GCD domain if and only if the Nagata ring of D with respect to
the semistar operation %, Na(D, ) is a G-GCD domain if and only if
Na(D,xy) is a GCD domain, where 1 is the semistar operation on D[X]
introduced by G. Picozza [12].

1. Introduction

Let D be an integral domain with quotient field K. Let F (D) be the set
of all nonzero D-submodules of K, F (D) be the set of all nonzero fractional
ideals of D and f(D) be the set of all nonzero finitely generated D-submodules
of K.

Semistar operations were first defined in 1994 by A. Okabe and R. Matsuda
[10] as an extension of the classical star operations.

A semistar operation on D is a map % : F (D) — F(D); E — E* such that
for all z € K ~ {0} and for all E, F' € [ (D), the following properties are
satisfied:

(1) (zE)* =zE*.

(2) If E C F, then E* C F*.

(3) EC E* and E** := (E*)* = E*.
For every E € F (D), set E*f = U{F*|F € f(D) and F C E}, 5 is a semistar
operation on D called the semistar operation of finite type associated to x. A
semistar operation is said to be of finite type whenever * = x;. Let *; and x*
be two semistar operations on D, we say that x; < %o if E*t C E*2 for each
E € F(D), or, equivalently, if (E*)*2 = (E*2)*t = E*2. Let % be a semistar
operation on D and I be a nonzero ideal of D, we say that I is a quasi-x-ideal
if I = I* N D and we say that I is a quasi-x-maximal ideal if I is a maximal
element in the set of proper quasi-*-ideals. We denote by M (%) the set of
quasi-x-maximal ideals of D. If x is a non trivial semistar operation (D* # K)
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of finite type, then each proper quasi-x-ideal is contained in a quasi-x-maximal
ideal [5, Lemma 4.20].

Let * be a semistar operation on D, we denote by %, the semistar operation
defined by * : F(D) — F(D); E + E* := U{E : J|J* = D*/}. Let I €
F (D), we denote by I = {x € K|2I C D} and I, = (I"!)7!. If xis a
semistar operation on D, we say that I is x-invertible if (I771)* = D* and I is
called *s-locally principal if for each M € M (%) there exists z € D such that
IDM = xDM.

Let I be a nonzero fractional ideal of D, we say that I is a x-principal ideal
if there exists z € K such that I* = xD*.

Let * be a semistar operation on the integral domain D. By [4], we say that
D is »-GCD fif for each a,b € D\{0}, (a,b), is *-principal and we say that D
is G-x-GCD fif for each a,b € D\{0}, aD NbD is *-invertible.

For a semistar operation x on D, S. El. Baghdadi in [4], proved the analogues
of classical properties of GCD rings and G-GCD rings. He proved that D is %-
GCD if and only if for all T € f(D), I, is a *-principal ideal and D is G-x-GCD
if and only if for all I € f(D), I, is a *f-invertible ideal.

In Section 2 of this paper, we show that D is G-x-GCD if and only if D[X]
is G-x1-GCD, where * is the semistar operation on D[X] introduced by G.
Picozza [12]. We generalize some classical results in the context of semistar
operations. We prove among others, that if x is a semistar operation on D,
I € f(D) and if D* is integrally closed, then (I : I)* = D*, and if L is a
localizing system of D, f,g € K[X]\{0} and if D*~ is integrally closed, then
(D :ep(fep(g))™ = (D : ep(fg))*t, where , is the semistar operation on
D associated to L [5, Proposition 2.4]. Let (H) be the following property: for
every family (I))xea of fractional ideals of D with nonzero intersection, we
have ()\QAI A= )\QAI; We prove that if D* is integrally closed and D satisfies

the property (H), then for each I € f(D[X]) there exist ¢ € D[X]\{0} and
N € f(D) such that (I,)** = g(N[X],)** = g(N,)*[X]. As a consequence, we
get the main result of this paper: if x is a semistar operation satisfying the
property (H), then D is G-*-GCD if and only if D[X] is G-x;-GCD.

In Section 3, we prove that D is G-x-GCD if and only if Na(D,*y) is G-
GCD if and only if Na(D, ) is GCD, where Na(D, *f) is the Nagata ring
associated to *y.

2. G-x-GCD polynomial rings

We recall some definitions and properties related to semistar operations.
It is clear that any semistar operation satisfies the following axioms: for all
E,FeF(D)

(1) (BF)" = (EF*)" = (B*F)* = (E*F*)".
(2) (B+ F)* = (B* + F)* = (B + F*)* = (E* + F*)".
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(3) For every subset (Eq)aca C F(D), N EX =( N EL)*, if
aEA Q€N
0B #(0).
The identity is a semistar operation on D, denoted by dp. The map
* : F(D)— F(D)
E+— FE° =K

is a semistar operation called the trivial semistar operation.

Let x be a semistar operation on D. An ideal I of D is called a quasi-x-ideal
of D if I = I*N D, it is easy to see that, for any ideal I of D, the ideal I* N D
is a quasi-x-ideal. An ideal is said to be a quasi-x-prime, if it is prime and a
quasi-x-ideal.

A quasi-x-maximal ideal is an ideal that is a maximal element in the set of
quasi-x-prime ideals. If x is a non trivial semistar operation of finite type, then
each proper quasi-x-ideal is contained in a quasi-*-maximal ideal [5, Lemma
4.20].

Recall from [5], that a localizing system of D is a family L of ideals of D
such that:

(LS1) If I € L and J is an ideal of D such that I C J, then J € L.

(LS3) If I € L and J is an ideal of D such that (J :p iD) € L for each i € I,
then J € L.

A localizing system L is finitely generated if for each I € L, there exists a
finitely generated ideal J € L such that J C I. If L is a localizing system, and
I.,JeL,thenINJ e Land IJ € L.

A semistar operation « is stable if (ENF)* = E*NF* for each E, F € F (D).
The relation between localizing systems and stable semistar operations has
been investigated by M. Fontana and J. Huckaba in [5]. We recall the following
results from [5]:

Proposition 2.1. Let D be an integral domain.

(1) Let * be a semistar operation on D and L* = {I ideal of D such that
I* = D*}, then L* is a localizing system (called the localizing system
associated to x).

(2) Let L be a localizing system. The map:

*x,  F(D)— F(D)
Er—FEt=U{E:x J, JeL}

s a stable semistar operation on D.

(3) Let x be a semistar operation of finite type. Then L* is a finitely
generated localizing system.

(4) Let L be a finitely generated localizing system. Then xr, is a semistar
operation of finite type.

(5) Let x be a semistar operation on D. Then xp« = % if and only if x is
stable.
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If x is a semistar operation, the map * := *;+; is a semistar operation
associated to the localizing system L*f. % is a stable semistar operation of
finite type on D, and for E € F(D), E* = N{EDy | M € M(x5)} [12].

By [5], * =% if and only if * is stable of finite type. Recall from [8], that if
E € F(D) we say that E is a x-finite ideal if there exists F' € f(D) such that
E* = F*. In particular, if I is xy-finite, then it is x-finite. We notice that, in
the previous definition of a x-finite ideal, we do not require that F C E. Notice
that, E is *-finite if and only if there exists F' € f(D) and F' C E such that
F* = E*. Let D be an integral domain, 7" be an overring of D, ¢ : D — T be
the canonical embedding of D in T and * be a semistar operation on D. By
[6], the map x; : F(T) — F(T), E — E* := E* is a semistar operation on 7.

Lemma 2.2. Let x be a semistar operation on the integral domain D, and let
I € f(D). If D* is integrally closed, then (I : I)* = D*.

Proof. Because D C I : I, D* C (I : I)*. Conversely, since D* is integrally
closed, D* = N{V, |V, is a valuation overring of D*}. Let x € I : I and
V.. be a valuation overring of D*, then zIV, C IV,. Since I € f(D), there
exists a € K\{0} such that IV, = aV,. Hence zaV,, C aV,, which implies that
x € D*. O

Lemma 2.3. Let D be an integral domain, L be a localizing system of D,
I €eF(D) and J € f(D). Then (I:J)*t = (I*% : J).

Proof. Let x € (I : J)**, there exists F' € L such that «F' C I : J, so
x € I** : J. Conversely, let € I*L : J. Since J € f(D), there exists F € L
such that xJF C I then x € (I : J)*L. O

Proposition 2.4 ([12]). Let D be an integral domain and L be a localizing
system of D. Let X be an indeterminate on D.
(1) L[X] := {I ideal of D[X]|JD[X] C I for some J € L} is a localizing
system of D[X| and L|X] = {I ideal of D|X] such that IND € L}.
(2) If L is a finitely generated localizing system of D, then L[ X] is a finitely
generated localizing system of D[X].

Let D be an integral domain and L be a localizing system of D. Let X
be an indeterminate on D. G. Picozza in [12], defined the following semistar
operation on D[X]:

x : F(D[X]) — F(D[X))
E— (B) :=WE:JX]|JelL}
It is clear that = is a stable semistar operation on D[X].
Remark 2.5. (1) Let I € F(D) then (I[X])* = I*F[X]. Indeed, let f € (I[X])*,
there exists F' € L such that fF C I[X] which implies that f € K[X]. Set
f=>"ga; X" with a; € K then a;,F C I so, a; € I*L for each i € {0,...,n}.
Hence f € I**[X]. Conversely, let f = > " ja, X' € I*:[X] C K[X], there
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exists F' € L such that a;F C I for each i € {0,...,n}. Hence ;X" C
and f € (J[X])*.

(2) If x is a semistar operation on the integral domain D, then x; = %« x]
is a stable semistar operation of finite type on D[X].

N
=
R
et

Lemma 2.6 ([13, Lemme 1]). Let D be an integral domain and f,g € K[X].
If D is integrally closed, then (c(f)c(g9))~! = (e(fg))~t.

Lemma 2.7. Let D be an integral domain, L be a localizing system of D and
fyg € K[X]. If D*L is an integrally closed domain, then (D : cp(f)ep(g))*L =
(D :ep(fg))* ™.

Proof. Let R = D*-. By Lemma 2.6, (cr(f)cr(g))™ = (cr(fg))™'. But
cr(f) = cp(f)R implies that (cp(f)ep(g)R)™ = (cp(fg)R)~t. That is to
say (D*F : cp(f)ep(g)D*F) = (D*t : ep(fg)D**). So (D** : ep(f)en(g)) =
(D*t :ep(fg)) and by Lemma 2.3, (D : ep(f)ep(g9))* = (D :ep(fg))*r. O

Lemma 2.8 ([13, Lemme 3)). Let I be a divisorial ideal of D[ X| such that J =
INK #(0), let B= D[X]. Then J =n{d(D :x c(g9))|I € Beg~',d € D\{0}
and g € B}.

Lemma 2.9. Let x be a semistar operation on the integral domain D satisfying
the property (H) : whenever (In)aen is a family of fractional ideals of D with
nonzero intersection, ( ﬂAIQ)* = ﬂAIO*" Let I € F(D). Then

[e1S ac

(1) (7 = (1)
(2) (L) = (I"),.

1) Let z € (I_Nl);7 there exists FF € L*/ such that xF C I~!. Hence
xl € D* and z € (I*)~!. Conversely, since % satisfies the property (H),

(I~h* = reﬁla_lD; and (I*)~! = ﬂl;a_lD;. As I C I* we have (I7')* D
(=" - - - -
(2) (L) =) ) =) =) ) =T O

Examples 2.10. (1) Let D be an integral domain and e be the following
semistar operation:

v
S
s,

—

e : T(D)—T(D)
E+——FE°=K

e is a stable semistar operation of finite type and satisfies the property (H).

(2) Recall from [14, Definition 4.1] that, if D is an integral domain and ©
is a set of overrings of D such that the quotient field of D is not in O, we say
that © is a Jaffard family on D if for every integral ideal I of D,

o D= TﬂeT.
€
e O is locally finite. (i.e., if every € D\{0} is a nonunit in only finitely

many T € ©.)
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« 1= 0 (TND)
€
e If T # S are in ©, then (/TN D)+ (ISND)=D.

Let D be an integral domain, © be a Jaffard family on D and T € © such that
T # D. As T is a flat overring of D, the following semistar operation

x : F(D)—F(D)
E+~— E*=FET

is a stable semistar operation of finite type on D and x # d. By [14, Proposition
4.5], for each family (I,)aeca of D-submodules of K with nonzero intersection,
(N I,)T= nIT. Hence ( N I,)*= N (I%).

acl acl acA aEA

(3) Recall from [11], that a domain D has finite character if each nonzero
element of D is contained in at most finitely many maximal ideals of D. We
say that D is h-local if D has finite character and each nonzero prime ideal of
D is contained in a unique maximal ideal of D. By [11, Example 3.2], there
exists a non local domain D such that D is h-local and every maximal ideal of
D has height 2. By [14, Page 8], {Day | M € Max(D)} is a Jaffard family. Let
N € Max(D), the following semistar operation

*(pyy @ F(D)— F(D)
E s E*(°x) = EDy

is a stable semistar operation of finite type, x(p,} # d and xp, satisfies the
property (H).

Theorem 2.11. Let * be a semistar operation on the integral domain D such

that whenever (Ix)xea is a family of fractional ideals of D with nonzero in-

tersection, we have ( ﬂAIa)* = OAI;. Suppose that D* is integrally closed.
ae [e1S

Let I € f(D[X]). Then there exist g € D[X]\{0} and N € f(D) such that
(L)* = g((N[X])o)™ = g(Now)*[X].

Proof. Since I € f(D[X]), there exists g € D[X]\{0} such that g/~ C D[X].
Hence 1 € (¢971),. Let J = (¢~ 'I),, J is a divisorial ideal of D[X] and
JNK # (0). By Lemma 2.8, JNK =N{d(D : ¢(h))|J C Bdh~',d € D\{0}
and h € B}, where B = D[X]. Let H = n{d(D : c¢(h))|J C Bdh™!,d € D\{0}
and h € B}. H is a divisorial ideal of D. Indeed, H C J which implies that
H[X] € J. So H,[X] C J, and again H, C JN K = H. We prove that
J* = (HB)**. As H C J, HB C J hence (HB)** C J**. Conversely, let
f € J,d e D\{0} and h € B such that J C Bdh~'. Then ¢(fh) C dD and
d=' € D : ¢(fh). Since D* is integrally closed, (D : c(fh))* = (D : ¢(f)c(h))*.
So there exists F' € L*f such that d='F C D : ¢(f)c(h) hence c(f) € N{d(D :
c(h))*| J € Bdh~',d € D\{0}}. By hypothesis, ¢(f) € H* and f € H*B =
(HB)*'. Consequently g~*I C (HB)*'. As I is a finitely generated submodule
of B, there exist a finitely generated ideal F' of D, F € L*/ and a finitely
generated D-submodule N of K such that N € H and ¢ 'IF C NB. So
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g Y(IF), C (NB), which implies that ¢~'I,F C (NB),. Hence g~'I, C
((NB),)*t, that is to say J** C ((NB),)**. Conversely, as N C H then
(NB), C (HB),. Since H is a divisorial ideal of D, HB is a divisorial ideal of
B. Therefore (NB),, C HB which implies that (g7'1,)** = J** = ((NB),)*.
Hence (I,)** = g((NB),)**. O

Definition 2.12. Let x be a semistar operation on the integral domain D.

(1) An ideal I of D is called x-invertible if (I171)* = D*.

(2) We say that D is a generalized »-GCD domain (G-*-GCD) if the
intersection of two principal ideals aD N bD is *g-invertible for all
0#a,beD.

Theorem 2.13 ([4, Theorem 4.10]). Let x be a semistar operation on the
integral domain D. The following are equivalent:

(1) D is a G-*x-GCD domain, that is, aD NbD is a x¢-invertible ideal of
D for all a,b € D\{0}.

(2) For allI € f(D), (D:1I) is a *g-invertible ideal of D.

(3) ForallI € f(D), I, is a x¢-invertible ideal of D.

Remark 2.14. (1) If D is a G-+-GCD domain, then D* is an integrally closed
domain. Indeed, since D is a G-x-GCD domain, by [4, Remark 4.11(1)], Dy,
is a GCD domain for each M € M (x5). So, Dy is a G-GCD domain for each
M € M(%g). By [2, Corollary 1], Dy is integrally closed. As D* = N{Dp|P €
M (%f)} then D* is an integrally closed domain.

(2) Let % and *3 be two semistar operations on D such that x; < %o, If D
is a G-#1-GCD domain, then D is a G-x3-GCD domain. Indeed, let I € f(D).
Since D is a G-#;-GCD domain, I, is *j-invertible so (I,/71)** = D*1 and
D*2 = (D*l)*z _ ((Ivl_l)*l)*2 — (Ivl_l)*z.

Theorem 2.15. Let x be a semistar operation satisfying the property (H).
Then D is a G-x-GCD domain if and only if D[X] is a G-x1-GCD domain.

Proof. Suppose that D is a G-x-GCD domain, we prove that D[X] is a G-x1-
GCD domain. Let I € f(D[X]). By Remark 2.14, D* is an integrally closed
domain. By Theorem 2.11, there exist N € f(D) and g € D[X]\{0} such that
(I,)** = g(N*),[X]. As I C (I,)** then (g(N*),D[X])~' C (ID*[X])~!. But
(g(NF),[X])~! = g~ *(N*)"'[X]. On the other hand, (ID*[X])~! = (I~1)*.
Indeed, let f € D*[X] : ID*[X] then fI C D*[X] = (D[X])*. Since I
is a finitely generated submodule of D[X], there exists F € L*f such that
fIF C D[X]. Hence f € (I"1)*1. Conversely, let f € (I~1)*1, there exists
F € L*s such that fF C I~' which implies that f € (ID*[X])~!. There-
fore g~ (NF)~1[X] C (I")* and again (I,g~ (N%) " [X])" C (LI,
As (Lg LN THXD)™ = ((g(N[X])o) g7 N THX]™ = (N, NTHX])* =
(N,N=1*[X] and D is a G-*-GCD domain, (I,I=1)* = (D[X])** that is to
say I, is x;-invertible in D[X]. So D[X] is a G-x;-GCD domain.
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Conversely (this implication does not require the hypothesis (H)). Suppose
that D[X] is a G-x;-GCD domain. We prove that D is a G-*GCD domain.
Let I € f(D) and J = I[X] € f(D[X]) then J, is #1-invertible. As J, = I,[X],
D*[X] = (J,J )" = (I,I~1)*[X], this leads to (I,I~')* = D*. O

Corollary 2.16. Let D be an integral domain.
(1) D is a G-GCD domain if and only if D[X] is a G-GCD domain.
(2) D is a G-w-GCD domain if and only if D[X] is a G-wpix)-GCD do-

main.

Proof. (1) If x = dp, then *; = dpx]. Indeed, the localizing system Ldp
associated to dp is equal to {D} then L»[X] = {D[X]}. Let E € F(D[X]),
we have E4r)1 = E: D[X] = E = E% 1. So, (dp); = dp[x]-

(2) If ¥ = v, then ¥ = w, vy =t and %1 = *pex). If D is G-w-GCD,
then D[X] is G-x;-GCD domain. By [12], x1 < wppx] so, D[X] is G-wpx]-
GCD domain. By [3, Theorem 2.3] and the fact that M(wpx)) = {Q[X]|Q €
M(t)}u{Q € Spec(D[X]) | QND = (0) and ¢(Q)* = D} the converse holds. [J

3. G-x-GCD Nagata rings

Let * be a semistar operation on the integral domain D and let N(x) :=
Np(x) := {h € D[X]|h # 0 and c¢(h)* = D*}. N(x) is a saturated multi-
plicative subset of D[X] and N(x) = N(xy). Let Na(D,x) := D[X|y@) =
{5 | f,9 € D|X];9 # 0,¢(9)* = D*} be the Nagata ring of D with respect to
the semistar operation *.

Proposition 3.1 ([7, Proposition 3.1]). Let x be a semistar operation on the
integral domain D. Then:

(1) Maz(Na(D,«)) = {Q[X]n() |Q € M(xf)}.

(2) Na(D,x) = {Dq(X)|Q € M(xp)} = {D[X]qx) | Q € M(xj)}-

(3) E* = ENa(D,*) N K for each E € F(D).

(4) Na(D,*) = Na(D,*s) = Na(D,*).
Lemma 3.2. Let D be an integral domain, P € Spec(D) and E a nonzero
subset of D. If EDp = aDp with a € D, then there exists x € E such that
EDP = QTDP.
Proof. As EDp = aDp, there exist n € N*, a; € E, b; € D and s € D\ P such
that a = M Since a; € E we get a; € aDp which implies that there exist
d; € D and t € D\P such that a; = a%. Hence 1 = Zﬂ:@# Since st & P,

there exists ig € {1,...,n} such that d; b;, ¢ P. Therefore di“ € U(Dp) and

aDp = aiODp. O

Theorem 3.3 ([1, Theorem 7]). Let x be a semistar operation on the integral
domain D and f € D[X|\{0} such that c(f) is x¢-locally principal. Then
c(f)Na(D,x5) = fNa(D,*y).
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Proof. (The proof uses arguments similar to those used in the proof of Theorem
7 of [1]. But the change of notation requires a new proof.)

Let f =" ,a;X" with a; € D. Since ¢(f) is *s-locally principal, for each
M € M(xy) there exists x € D such that ¢(f)Day = Dy By Lemma 3.2,
there exists ig € {0,...,n} such that ¢(f)Dy = a;, Dy As a; € a;, Dy, for
each i € {0,...,n} there exists 7; € Dys such that a; = a;,7;. In particular,
Yio = 1. Let h =49+ 11X + -+ + 9, X" then a;,,h = f and ¢(h)Dpr = Dy
Hence hD[X]nx) = D[X]|mix)- We get o(f)D[X]mx) = aihD[X]mx) =
ID[X]ax)- Consequently c(f) € N{fD[X]yx) | M € M(xf)} = fNa(D,xy).
Conversely, since f € ¢(f)D[X] C ¢(f)Na(D, *s), we conclude that

fNa(D,*5) Ce(f)Na(D,*y). 0

Theorem 3.4. Let x be a semistar operation on the integral domain D and X
be an indeterminate on D. Let f € D[X]. Then the following statements are
equivalent:
(1) e(f) is *s-locally principal.
(2) fNa(D,xf) = e(f)Na(D, ).
(3) There exists an ideal I of D such that fNa(D,xs) = INa(D,*y).
(4) c¢(f)Na(D,*y) is a principal ideal of Na(D,*§).
(5) c(f)Na(D,*y) is a locally principal ideal of Na(D,*y).

(
Proof. (1) = (2) follows from Theorem 3.3.
(2) = (3) is clear.

(3) = (1) Suppose that fNa(D,x¢) = INa(D,*¢) with I an ideal of D.
Let M € M(xz). Then ID[X]yx) = fD[X]nmix). By Lemma 3.2, there exists
a € I such that fD[X]M[X] = aD[X]M[X] As INa(D,*f) = fNa(D,*f) -
c(f)Na(D,*;) then I C c(f)Na(D,x;) N K = (c(f))* and again I C ¢(f)Dyys.
So there exist b € ¢(f) and s € D\M such that a = 2. Hence ID[X]mx) =
bD[X|r1x) which implies that f € bD[X]asx). There exist g € D[X] and h €
D[X]\M[X]such that f = bf. Ash ¢ M[X]then c(h)Dy = Dy. By applying
the Dedekind-Mertens lemma to f and h we get c(h)™c(fh) = c(h)™ e(f),
where m = deg(f). Since ¢(h)Dp = Dy then ¢(f)Dar = c(fh)c(h)™ Dy =
c(bg)Dpyr C 0Dy C e(f)Dur-

(2) = (4) and (4) = (5) are clear.

(5) = (1) Suppose that c¢(f)Na(D,*s) is locally principal, we prove that
c(f) is xy-locally principal. Let M € M(xy) and J = ¢(f)Na(D,*s). Then
JNa(Dv*f)M[X]N(*f) is a principal ideal of Na(D7*f)M[X]N(*f) = D[X]M[X]
So, JNa(D,*f)M[X]N(*f) = ¢(f)D[X]nx) is a principal ideal of D[X]y/x].
By Lemma 3.2, there exists a € c(f) such that c(f)D[X]yx) = aD[X]nx)-
As f € c(f)D[X]nmx), there exist k € D[X] and h € D[X]\M[X] such that
= a%. By applying the Dedekind-Mertens lemma to f and h € D[X], we
get c(h)™e(fh) = c(h)™*e(f), where m = deg(f). Since c¢(h)Dys = Dy, then
c(f)Dm = c(fh)Dn € aDn € e(f) D 0
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Corollary 3.5. Let x be a semistar operation on the integral domain D and I
be an ideal of D. Then the following statements are equivalent:

(1) I is *-finite and *s-locally principal.

(2) INa(D,*y) is a finitely generated, locally principal ideal.

(3) INa(D,*y¢) is a principal ideal of Na(D,*¢).

Proof. (1) = (3) Since I is *finite, I* = (ag,...,a,)* = c(f)* with f =
S oai X and IDy = c(f)Day for each M € M(xg). As I is xg-locally princi-
pal then ¢(f) is x¢-locally principal. On the other hand I* = INa(D, *)NK =
c(f)* = c(f)Na(D,x;)NK so, c(f)Na(D,*;) = INa(D,*s). By Theorem 3.4,
c(f)Na(D,x¢) is a principal ideal of Na(D,*¢).

(3) = (2) is clear.

(2) = (1) Suppose that INa(D,«y) is a finitely generated and locally prin-
cipal ideal, there exist f1,..., f, € D[X] such that

INa(D,*f) = (f1,-.., fa)Na(D,*y).
Since f; € INa(D,y), there exist a;; € I, f;; € D[X] and h; € N(xy)
such that f; = M Let J = (ai1,---@im; |7 € {1,...,n}) C I then
INa(D,*;) = JNa(D,*s). Hence I* = INa(D,*;)NK = JNa(D,*;)NK =

J*. Since J C I, I is *-finite, let f = >, ;.n:"l b; X" As INa(D,*s) =
c(f)Na(D,*y) is a locally principal ideal, then by Theorem 3.4, ¢(f) is *¢-
locally principal that is to say JDyr = ¢(f)Dps is a principal ideal for each
M € M(%y). Since I* = J*, for each M € M (%), IDy; = JDyy is a principal
ideal which implies that I is a %s-locally principal ideal. (I

Proposition 3.6. Let x be a semistar operation on the integral domain D and
N ={feD[X,Y]|cp(f)** =D**}. Then
(1) N=DX,YNU{M[X,Y]|M € M(*5)} is a saturated multiplicative
subset of D[X,Y].
(2) DIX,Y]|n = Na(D,*£)(Y) where Na(D,x¢)(Y) is the Nagata ring of
Na(D,*s) associated to d.

Proof. (1) Let f € N then f ¢ M[X,Y] foreach M € M (x¢)so, f € D[X,Y]\U
{M[X,Y]|M € M(xs)}. Conversely, let f € DX, Y\U{M[X,Y]IM €
M(xp)}. If e(f)* # D*f, there exists M € M(%s) such that ¢(f) € M
which implies that f € M[X,Y] which is a contradiction. So ¢(f)*f = D*f and
N =DX,YNU{M[X,Y]| M € M(xs)}. Hence N is a saturated multiplicative
subset of D[X,Y].

(2) Let R = Na(D, ) and f € R(Y) so f = 4L with fy, fo € R[Y], fo # 0

and cgr(f2) = R. Let f1 = Z?:()h# with h; € D[X], ¢(h1)*/ = D*/ and
fii € DIX]. Let fo = Z=002" p 5 e D[X], c(ho)* = D* and

ho )
(f2,00+ s fam)N(y) = cr(f2) = Na(D,*g). Let g = >0, f2;Y7 € D[X,Y],
CNa(D,*f)(g) = NCL(D,*f) = (fg,o,...,flm)]v(*f), there exists h € N(*f)
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such that h € (fa,0,-.., fa,m)D[X]. So ep(h) C ep(fa0) + -+ cn(fom) =
¢p(g) € D which implies that D*f = cp(h)* C ¢p(g)* € D*/ and again
ep(g)*f = D*f. Then ghy € N therefore f = % € D[X,Y]y. Conversely,

let f = £ € D[X,Y]y with fi € D[X,Y] and f» € N = D[X,Y]\ U
{M[X,Y]|M € M(x)}. Let fo» = S0 fo,;Y7 with fo; € D[X] for each
J €10,...,m}. If enop o) (f2) # Na(D,xy), there exists M € M(xs) such
that cya(D,«;)(f2) © M[X]n(x,;) which implies that (f2o0,..., fo.m) € M[X].
Hence fy € M[X,Y] which is impossible. Then cya(p ;) (f2) = Na(D,*y) so,

f="1eNa(D,x)(Y). O

Theorem 3.7. Let x be a semistar operation on the integral domain D and X
be an indeterminate on D. Then every nonzero finitely generated and locally
principal ideal of Na(D,*y) is a principal ideal.

Proof. Let I = (fi1,..., fa)Na(D,*f) # 0 such that I is a locally principal
ideal, where f; € D[X] for each i € {1,...,n}. Let g = f1 + oYV +--- +
Y"1 € DIX,Y], R= Na(D,*s) and K; the quotient field of R. So, cr(g) =
(fi,..., fn)R =1 is locally principal in R. By Theorem 3.3, INa(D,*7)(Y) =
cr(9)R(Y) = gR(Y). By Proposition 3.6, Na(D,x;)(Y) = D[X,Y]n then
IDIX,Y]y = gD[X,Y]n. Let m; = deg(f;) for each i € {1,...,n} and f =
fi 4 foXmtl 4 fyxmatmed2 ooy f xmatetmaot(n-1) ¢ DIX]. Hence
ep(f) = cp(g) and f € ID[X,Y]|ny = gD[X,Y]n, there exist hy € D[X,Y]
and hy € N such that f = g%. We prove that c¢p(hy)*f = D*f. Suppose
that ¢p(h1)*f # D*/, there exists P € M (xs) such that ¢cp(hi) C P. Let
(V, M) be a valuation overring of D such that M N D = P. If ¢y (he) C M,
then c¢p(he) € M N D = P which is impossible. As V is a valuation domain,
cv(fhe) = cv(f)ev(hz). Socy(f) = cv(f)ev(he) = cv(ghi) = cv(g)ev (h1) =
cv(f)ey(hy). By Nakayama’s lemma, either ¢y (f) = (0) or ¢y (hy) = V and
since f # 0 then cy (hy) = V which is impossible because cy (hy) = ¢p(h1)V C
PV C MV = M. Then cp(h1)* = D*/ and fNa(D,x;)(Y) = fD[X,Y]y =
g D[X, Y]y = gNa(D,x;)(Y) = I(Y). Hence fNa(D,xy) = I. O

Proposition 3.8 ([12, Proposition 3.4 and Lemma 3.5]). Let x be a semistar
operation on the integral domain D. Let x := % be the spectral semistar
operation on D[X] defined by the set A\ := {P[X]| P € M(%¢)} and let i be the
canonical embedding of D[X] in Na(D,*s). Then

(1) *1 = *L*f[X] S *,

(2) *i = dNa(D,*f)-
Theorem 3.9. Let x be a semistar operation satisfying the property (H). The
following statements are equivalent:

(1) D is a G-*-GCD domain.

(2) D[X] is a G-*1-GCD domain.

(3) D[X] is a G-x-GCD domain.
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(4) Na(D,*¢) is a G-GCD domain.
(6) Na(D,xy) is a GCD domain.

Proof. (1) <= (2) follows from Theorem 2.15.

(2) = (3) If D[X] is a G-x;-GCD domain and since x; < %, D[X] is a
G-#-GCD domain.

(3) = (4) If D[X] is a G-+-GCD domain, by [4, Remark 4.11(3)], (D[X])*
is a G-%;-GCD domain. By [9, Lemma 3.8],  is a stable semistar operation of
finite type which implies by [12, Proposition 1.5], that *; is a stable semistar
operation of finite type. Then (D[X])* is a G-%;-GCD domain and by [12,
Proposition 1.6(2)], (D[X])* = Na(D,*s). Hence Na(D,*s) is a G-GCD
domain.

(4) = (5) Let I € f(Na(D,*s)). Since Na(D,*f) is a G-GCD domain,
I, is an invertible ideal. So I, is a finitely generated and locally principal
ideal of Na(D, ). By Theorem 3.7, I, is a principal ideal of Na(D, *s) then
Na(D, *y) is a GCD domain.

(5) = (1) If Na(D,*f) is a GCD domain, we prove that D is a G-x-
GCD domain. Let I € f(D) then (INa(D,*s))"' = I"'Na(D,xf). So
I,Na(D,*5)=(INa(D,*f)),. In fact, let f € (INa(D,*f)),. Since Na(D, *y)
is a GCD domain and I € f(D), (INa(D,*¢))~" is invertible in Na(D, ).
Hence (INa(D,x¢))™' € f(Na(D,*y)), there exists g € N(xf) such that
fg(INa(D,x¢))™t = fgI "' Na(D,*s) C D[X] so, I 'e(fg) € D and ¢(fg) C
I,. fg C I,D[X] which implies that f € I,Na(D,*s). Conversely, let z € I,
then z(INa(D,*¢))~' C Na(D,*¢). Hence z € (INa(D,*f)),. As Na(D,xy)
is a GCD domain, (INa(D, %)), is invertible in Na(D,s). Hence

I,I"'Na(D, ;) = Na(D, %f) and
(I,I™Y = LLI''Na(D,x;) N K = Na(D,x;) N K = D*. [

If x = d, then we recover the result of [2, Theorem 2].

Corollary 3.10. Let D be an integral domain. The following statements are
equivalent:

(1) D is a G-GCD domain.

(2) D[X] is a G-GCD domain.

(3) D(X) is a G-GCD domain.

(4) D(X) is a GCD domain.
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