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SEMISTAR G-GCD DOMAINS

Wafa Gmiza and Sana Hizem

Abstract. Let ? be a semistar operation on the integral domain D. In

this paper, we prove that D is a G-?̃-GCD domain if and only if D[X] is

a G-?1-GCD domain if and only if the Nagata ring of D with respect to
the semistar operation ?̃, Na(D, ?f ) is a G-GCD domain if and only if

Na(D, ?f ) is a GCD domain, where ?1 is the semistar operation on D[X]
introduced by G. Picozza [12].

1. Introduction

Let D be an integral domain with quotient field K. Let z(D) be the set
of all nonzero D-submodules of K, z(D) be the set of all nonzero fractional
ideals of D and f(D) be the set of all nonzero finitely generated D-submodules
of K.

Semistar operations were first defined in 1994 by A. Okabe and R. Matsuda
[10] as an extension of the classical star operations.

A semistar operation on D is a map ? : z(D) → z(D); E 7→ E? such that
for all x ∈ K r {0} and for all E, F ∈ z(D), the following properties are
satisfied:

(1) (xE)? = xE?.
(2) If E ⊆ F , then E? ⊆ F ?.
(3) E ⊆ E? and E?? := (E?)? = E?.

For every E ∈ z(D), set E?f = ∪{F ? |F ∈ f(D) and F ⊆ E}, ?f is a semistar
operation on D called the semistar operation of finite type associated to ?. A
semistar operation is said to be of finite type whenever ? = ?f . Let ∗1 and ∗2
be two semistar operations on D, we say that ∗1 6 ∗2 if E∗1 ⊆ E∗2 for each
E ∈ z(D), or, equivalently, if (E∗1)∗2 = (E∗2)∗1 = E∗2 . Let ? be a semistar
operation on D and I be a nonzero ideal of D, we say that I is a quasi-?-ideal
if I = I? ∩ D and we say that I is a quasi-?-maximal ideal if I is a maximal
element in the set of proper quasi-?-ideals. We denote by M(?) the set of
quasi-?-maximal ideals of D. If ? is a non trivial semistar operation (D? 6= K)
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of finite type, then each proper quasi-?-ideal is contained in a quasi-?-maximal
ideal [5, Lemma 4.20].

Let ? be a semistar operation on D, we denote by ?̃, the semistar operation
defined by ?̃ : z(D) → z(D); E 7→ E?̃ := ∪{E : J | J?f = D?f }. Let I ∈
z(D), we denote by I−1 = {x ∈ K |xI ⊆ D} and Iv = (I−1)−1. If ? is a
semistar operation on D, we say that I is ?-invertible if (II−1)? = D? and I is
called ?f -locally principal if for each M ∈M(?f ) there exists x ∈ D such that
IDM = xDM .

Let I be a nonzero fractional ideal of D, we say that I is a ?-principal ideal
if there exists x ∈ K such that I? = xD?.

Let ? be a semistar operation on the integral domain D. By [4], we say that
D is ?-GCD if for each a, b ∈ D\{0}, (a, b)v is ?̃-principal and we say that D
is G-?-GCD if for each a, b ∈ D\{0}, aD ∩ bD is ?f -invertible.

For a semistar operation ? on D, S. El. Baghdadi in [4], proved the analogues
of classical properties of GCD rings and G-GCD rings. He proved that D is ?-
GCD if and only if for all I ∈ f(D), Iv is a ?̃-principal ideal and D is G-?-GCD
if and only if for all I ∈ f(D), Iv is a ?f -invertible ideal.

In Section 2 of this paper, we show that D is G-?-GCD if and only if D[X]
is G-?1-GCD, where ?1 is the semistar operation on D[X] introduced by G.
Picozza [12]. We generalize some classical results in the context of semistar
operations. We prove among others, that if ? is a semistar operation on D,
I ∈ f(D) and if D? is integrally closed, then (I : I)? = D?, and if L is a
localizing system of D, f, g ∈ K[X]\{0} and if D?L is integrally closed, then
(D : cD(f)cD(g))?L = (D : cD(fg))?L , where ?L is the semistar operation on
D associated to L [5, Proposition 2.4]. Let (H) be the following property: for
every family (Iλ)λ∈Λ of fractional ideals of D with nonzero intersection, we
have ( ∩

λ∈Λ
Iλ)?̃ = ∩

λ∈Λ
I ?̃λ. We prove that if D?̃ is integrally closed and D satisfies

the property (H), then for each I ∈ f(D[X]) there exist g ∈ D[X]\{0} and
N ∈ f(D) such that (Iv)

?1 = g(N [X]v)
?1 = g(Nv)

?̃[X]. As a consequence, we
get the main result of this paper: if ? is a semistar operation satisfying the
property (H), then D is G-?̃-GCD if and only if D[X] is G-?1-GCD.

In Section 3, we prove that D is G-?̃-GCD if and only if Na(D, ?f ) is G-
GCD if and only if Na(D, ?f ) is GCD, where Na(D, ?f ) is the Nagata ring
associated to ?f .

2. G-?-GCD polynomial rings

We recall some definitions and properties related to semistar operations.
It is clear that any semistar operation satisfies the following axioms: for all
E,F ∈ z(D)

(1) (EF )? = (EF ?)? = (E?F )? = (E?F ?)?.
(2) (E + F )? = (E? + F )? = (E + F ?)? = (E? + F ?)?.
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(3) For every subset (Eα)α∈∧ ⊆ z(D), ∩
α∈∧

E?α = ( ∩
α∈∧

E?α)?, if

∩
α∈∧

E?α 6= (0).

The identity is a semistar operation on D, denoted by dD. The map

? : z(D) −→ z(D)

E 7−→ Ee = K

is a semistar operation called the trivial semistar operation.
Let ? be a semistar operation on D. An ideal I of D is called a quasi-?-ideal

of D if I = I? ∩D, it is easy to see that, for any ideal I of D, the ideal I? ∩D
is a quasi-?-ideal. An ideal is said to be a quasi-?-prime, if it is prime and a
quasi-?-ideal.

A quasi-?-maximal ideal is an ideal that is a maximal element in the set of
quasi-?-prime ideals. If ? is a non trivial semistar operation of finite type, then
each proper quasi-?-ideal is contained in a quasi-?-maximal ideal [5, Lemma
4.20].

Recall from [5], that a localizing system of D is a family L of ideals of D
such that:

(LS1) If I ∈ L and J is an ideal of D such that I ⊆ J , then J ∈ L.
(LS2) If I ∈ L and J is an ideal of D such that (J :D iD) ∈ L for each i ∈ I,

then J ∈ L.
A localizing system L is finitely generated if for each I ∈ L, there exists a

finitely generated ideal J ∈ L such that J ⊆ I. If L is a localizing system, and
I, J ∈ L, then I ∩ J ∈ L and IJ ∈ L.

A semistar operation ? is stable if (E∩F )? = E?∩F ? for each E,F ∈ z(D).
The relation between localizing systems and stable semistar operations has
been investigated by M. Fontana and J. Huckaba in [5]. We recall the following
results from [5]:

Proposition 2.1. Let D be an integral domain.

(1) Let ? be a semistar operation on D and L? = {I ideal of D such that
I? = D?}, then L? is a localizing system (called the localizing system
associated to ?).

(2) Let L be a localizing system. The map:

?L : z(D) −→ z(D)

E 7−→ E?L = ∪{E :K J, J ∈ L}

is a stable semistar operation on D.
(3) Let ? be a semistar operation of finite type. Then L? is a finitely

generated localizing system.
(4) Let L be a finitely generated localizing system. Then ?L is a semistar

operation of finite type.
(5) Let ? be a semistar operation on D. Then ?L? = ? if and only if ? is

stable.
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If ? is a semistar operation, the map ?̃ := ?L?f is a semistar operation
associated to the localizing system L?f . ?̃ is a stable semistar operation of
finite type on D, and for E ∈ z(D), E?̃ = ∩{EDM |M ∈M(?f )} [12].

By [5], ? = ?̃ if and only if ? is stable of finite type. Recall from [8], that if
E ∈ z(D) we say that E is a ?-finite ideal if there exists F ∈ f(D) such that
E? = F ?. In particular, if E is ?f -finite, then it is ?-finite. We notice that, in
the previous definition of a ?-finite ideal, we do not require that F ⊆ E. Notice
that, E is ?f -finite if and only if there exists F ∈ f(D) and F ⊆ E such that
F ? = E?. Let D be an integral domain, T be an overring of D, i : D → T be
the canonical embedding of D in T and ? be a semistar operation on D. By
[6], the map ?i : z(T )→ z(T ), E 7→ E?i := E? is a semistar operation on T .

Lemma 2.2. Let ? be a semistar operation on the integral domain D, and let
I ∈ f(D). If D? is integrally closed, then (I : I)? = D?.

Proof. Because D ⊆ I : I, D? ⊆ (I : I)?. Conversely, since D? is integrally
closed, D? = ∩{Vα |Vα is a valuation overring of D?}. Let x ∈ I : I and
Vα be a valuation overring of D?, then xIVα ⊆ IVα. Since I ∈ f(D), there
exists a ∈ K\{0} such that IVα = aVα. Hence xaVα ⊆ aVα which implies that
x ∈ D?. �

Lemma 2.3. Let D be an integral domain, L be a localizing system of D,
I ∈ z(D) and J ∈ f(D). Then (I : J)?L = (I?L : J).

Proof. Let x ∈ (I : J)?L , there exists F ∈ L such that xF ⊆ I : J , so
x ∈ I?L : J . Conversely, let x ∈ I?L : J . Since J ∈ f(D), there exists F ∈ L
such that xJF ⊆ I then x ∈ (I : J)?L . �

Proposition 2.4 ([12]). Let D be an integral domain and L be a localizing
system of D. Let X be an indeterminate on D.

(1) L[X] := {I ideal of D[X] | JD[X] ⊂ I for some J ∈ L} is a localizing
system of D[X] and L[X] = {I ideal of D[X] such that I ∩D ∈ L}.

(2) If L is a finitely generated localizing system of D, then L[X] is a finitely
generated localizing system of D[X].

Let D be an integral domain and L be a localizing system of D. Let X
be an indeterminate on D. G. Picozza in [12], defined the following semistar
operation on D[X]:

∗ : z(D[X]) −→ z(D[X])

E 7−→ (E)∗ := ∪{E : J [X] | J ∈ L}
It is clear that ∗ is a stable semistar operation on D[X].

Remark 2.5. (1) Let I ∈ z(D) then (I[X])∗ = I?L [X]. Indeed, let f ∈ (I[X])∗,
there exists F ∈ L such that fF ⊆ I[X] which implies that f ∈ K[X]. Set
f =

∑n
i=0 aiX

i with ai ∈ K then aiF ⊆ I so, ai ∈ I?L for each i ∈ {0, . . . , n}.
Hence f ∈ I?L [X]. Conversely, let f =

∑n
i=0 aiX

i ∈ I?L [X] ⊆ K[X], there
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exists F ∈ L such that aiF ⊆ I for each i ∈ {0, . . . , n}. Hence aiX
i ⊆ (I[X])∗

and f ∈ (I[X])∗.
(2) If ? is a semistar operation on the integral domain D, then ?1 = ?L?f [X]

is a stable semistar operation of finite type on D[X].

Lemma 2.6 ([13, Lemme 1]). Let D be an integral domain and f, g ∈ K[X].
If D is integrally closed, then (c(f)c(g))−1 = (c(fg))−1.

Lemma 2.7. Let D be an integral domain, L be a localizing system of D and
f, g ∈ K[X]. If D?L is an integrally closed domain, then (D : cD(f)cD(g))?L =
(D : cD(fg))?L .

Proof. Let R = D?L . By Lemma 2.6, (cR(f)cR(g))−1 = (cR(fg))−1. But
cR(f) = cD(f)R implies that (cD(f)cD(g)R)−1 = (cD(fg)R)−1. That is to
say (D?L : cD(f)cD(g)D?L) = (D?L : cD(fg)D?L). So (D?L : cD(f)cD(g)) =
(D?L : cD(fg)) and by Lemma 2.3, (D : cD(f)cD(g))?L = (D : cD(fg))?L . �

Lemma 2.8 ([13, Lemme 3]). Let I be a divisorial ideal of D[X] such that J =
I ∩K 6= (0), let B = D[X]. Then J = ∩{d(D :K c(g)) | I ⊆ Bcg−1, d ∈ D\{0}
and g ∈ B}.

Lemma 2.9. Let ? be a semistar operation on the integral domain D satisfying
the property (H) : whenever (Iα)α∈Λ is a family of fractional ideals of D with
nonzero intersection, ( ∩

α∈Λ
Iα)?̃ = ∩

α∈Λ
I ?̃α. Let I ∈ z(D). Then

(1) (I−1)?̃ = (I ?̃)−1.
(2) (Iv)

?̃ = (I ?̃)v.

Proof. (1) Let x ∈ (I−1)?̃, there exists F ∈ L?f such that xF ⊆ I−1. Hence
xI ⊆ D?̃ and x ∈ (I ?̃)−1. Conversely, since ? satisfies the property (H),
(I−1)?̃ = ∩

a∈I
a−1D?̃ and (I ?̃)−1 = ∩

a∈I?̃
a−1D?̃. As I ⊆ I ?̃ we have (I−1)?̃ ⊇

(I ?̃)−1.
(2) (Iv)

?̃ = ((I−1)−1)?̃ = ((I−1)?̃)−1 = ((I ?̃)−1)−1 = (I ?̃)v. �

Examples 2.10. (1) Let D be an integral domain and e be the following
semistar operation:

e : z(D) −→ z(D)

E 7−→ Ee = K

e is a stable semistar operation of finite type and satisfies the property (H).
(2) Recall from [14, Definition 4.1] that, if D is an integral domain and Θ

is a set of overrings of D such that the quotient field of D is not in Θ, we say
that Θ is a Jaffard family on D if for every integral ideal I of D,

• D = ∩
T∈Θ

T .

• Θ is locally finite. (i.e., if every x ∈ D\{0} is a nonunit in only finitely
many T ∈ Θ.)



1694 W. GMIZA AND S. HIZEM

• I = ∩
T∈Θ

(IT ∩D).

• If T 6= S are in Θ, then (IT ∩D) + (IS ∩D) = D.

Let D be an integral domain, Θ be a Jaffard family on D and T ∈ Θ such that
T 6= D. As T is a flat overring of D, the following semistar operation

? : z(D) −→ z(D)

E 7−→ E? = ET

is a stable semistar operation of finite type on D and ? 6= d. By [14, Proposition
4.5], for each family (Iα)α∈Λ of D-submodules of K with nonzero intersection,
( ∩
α∈Λ

Iα)T = ∩
α∈Λ

IαT . Hence ( ∩
α∈Λ

Iα)? = ∩
α∈Λ

(I?α).

(3) Recall from [11], that a domain D has finite character if each nonzero
element of D is contained in at most finitely many maximal ideals of D. We
say that D is h-local if D has finite character and each nonzero prime ideal of
D is contained in a unique maximal ideal of D. By [11, Example 3.2], there
exists a non local domain D such that D is h-local and every maximal ideal of
D has height 2. By [14, Page 8], {DM |M ∈Max(D)} is a Jaffard family. Let
N ∈Max(D), the following semistar operation

?{DN} : z(D) −→ z(D)

E 7−→ E?{DN} = EDN

is a stable semistar operation of finite type, ?{DN} 6= d and ?{DN} satisfies the
property (H).

Theorem 2.11. Let ? be a semistar operation on the integral domain D such
that whenever (Iλ)λ∈Λ is a family of fractional ideals of D with nonzero in-
tersection, we have ( ∩

α∈Λ
Iα)?̃ = ∩

α∈Λ
I ?̃α. Suppose that D?̃ is integrally closed.

Let I ∈ f(D[X]). Then there exist g ∈ D[X]\{0} and N ∈ f(D) such that
(Iv)

?1 = g((N [X])v)
?1 = g(Nv)

?̃[X].

Proof. Since I ∈ f(D[X]), there exists g ∈ D[X]\{0} such that gI−1 ⊆ D[X].
Hence 1 ∈ (g−1I)v. Let J = (g−1I)v, J is a divisorial ideal of D[X] and
J ∩K 6= (0). By Lemma 2.8, J ∩K = ∩{d(D : c(h)) | J ⊆ Bdh−1, d ∈ D\{0}
and h ∈ B}, where B = D[X]. Let H = ∩{d(D : c(h)) | J ⊆ Bdh−1, d ∈ D\{0}
and h ∈ B}. H is a divisorial ideal of D. Indeed, H ⊆ J which implies that
H[X] ⊆ J . So Hv[X] ⊆ Jv and again Hv ⊆ J ∩ K = H. We prove that
J?1 = (HB)?1 . As H ⊆ J , HB ⊆ J hence (HB)?1 ⊆ J?1 . Conversely, let
f ∈ J , d ∈ D\{0} and h ∈ B such that J ⊆ Bdh−1. Then c(fh) ⊆ dD and
d−1 ∈ D : c(fh). Since D?̃ is integrally closed, (D : c(fh))?̃ = (D : c(f)c(h))?̃.
So there exists F ∈ L?f such that d−1F ⊆ D : c(f)c(h) hence c(f) ⊆ ∩{d(D :
c(h))?̃ | J ⊆ Bdh−1, d ∈ D\{0}}. By hypothesis, c(f) ⊆ H ?̃ and f ∈ H ?̃B =
(HB)?1 . Consequently g−1I ⊆ (HB)?1 . As I is a finitely generated submodule
of B, there exist a finitely generated ideal F of D, F ∈ L?f and a finitely
generated D-submodule N of K such that N ⊆ H and g−1IF ⊆ NB. So
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g−1(IF )v ⊆ (NB)v which implies that g−1IvF ⊆ (NB)v. Hence g−1Iv ⊆
((NB)v)

?1 , that is to say J?1 ⊆ ((NB)v)
?1 . Conversely, as N ⊆ H then

(NB)v ⊆ (HB)v. Since H is a divisorial ideal of D, HB is a divisorial ideal of
B. Therefore (NB)v ⊆ HB which implies that (g−1Iv)

?1 = J?1 = ((NB)v)
?1 .

Hence (Iv)
?1 = g((NB)v)

?1 . �

Definition 2.12. Let ? be a semistar operation on the integral domain D.

(1) An ideal I of D is called ?-invertible if (II−1)? = D?.
(2) We say that D is a generalized ?-GCD domain (G-?-GCD) if the

intersection of two principal ideals aD ∩ bD is ?f -invertible for all
0 6= a, b ∈ D.

Theorem 2.13 ([4, Theorem 4.10]). Let ? be a semistar operation on the
integral domain D. The following are equivalent:

(1) D is a G-?-GCD domain, that is, aD ∩ bD is a ?f -invertible ideal of
D for all a, b ∈ D\{0}.

(2) For all I ∈ f(D), (D : I) is a ?f -invertible ideal of D.
(3) For all I ∈ f(D), Iv is a ?f -invertible ideal of D.

Remark 2.14. (1) If D is a G-?-GCD domain, then D?̃ is an integrally closed
domain. Indeed, since D is a G-?-GCD domain, by [4, Remark 4.11(1)], DM

is a GCD domain for each M ∈ M(?f ). So, DM is a G-GCD domain for each

M ∈M(?f ). By [2, Corollary 1], DM is integrally closed. As D?̃ = ∩{DP |P ∈
M(?f )} then D?̃ is an integrally closed domain.

(2) Let ∗1 and ∗2 be two semistar operations on D such that ∗1 6 ∗2. If D
is a G-∗1-GCD domain, then D is a G-∗2-GCD domain. Indeed, let I ∈ f(D).
Since D is a G-∗1-GCD domain, Iv is ∗1-invertible so (IvI

−1)∗1 = D∗1 and
D∗2 = (D∗1)∗2 = ((IvI

−1)∗1)∗2 = (IvI
−1)∗2 .

Theorem 2.15. Let ? be a semistar operation satisfying the property (H).
Then D is a G-?̃-GCD domain if and only if D[X] is a G-?1-GCD domain.

Proof. Suppose that D is a G-?̃-GCD domain, we prove that D[X] is a G-?1-
GCD domain. Let I ∈ f(D[X]). By Remark 2.14, D?̃ is an integrally closed
domain. By Theorem 2.11, there exist N ∈ f(D) and g ∈ D[X]\{0} such that
(Iv)

?1 = g(N ?̃)v[X]. As I ⊆ (Iv)
?1 then (g(N ?̃)vD[X])−1 ⊆ (ID?̃[X])−1. But

(g(N ?̃)v[X])−1 = g−1(N ?̃)−1[X]. On the other hand, (ID?̃[X])−1 = (I−1)?1 .
Indeed, let f ∈ D?̃[X] : ID?̃[X] then fI ⊆ D?̃[X] = (D[X])?1 . Since I
is a finitely generated submodule of D[X], there exists F ∈ L?f such that
fIF ⊆ D[X]. Hence f ∈ (I−1)?1 . Conversely, let f ∈ (I−1)?1 , there exists
F ∈ L?f such that fF ⊆ I−1 which implies that f ∈ (ID?̃[X])−1. There-
fore g−1(N ?̃)−1[X] ⊆ (I−1)?1 and again (Ivg

−1(N ?̃)−1[X])?1 ⊆ (IvI
−1)?1 .

As (Ivg
−1(N ?̃)−1[X])?1 = ((g(N [X])v)

?1g−1N ?̃)−1[X])?1 = (NvN
−1[X])?1 =

(NvN
−1)?̃[X] and D is a G-?̃-GCD domain, (IvI

−1)?1 = (D[X])?1 that is to
say Iv is ?1-invertible in D[X]. So D[X] is a G-?1-GCD domain.
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Conversely (this implication does not require the hypothesis (H)). Suppose
that D[X] is a G-?1-GCD domain. We prove that D is a G-?̃-GCD domain.
Let I ∈ f(D) and J = I[X] ∈ f(D[X]) then Jv is ?1-invertible. As Jv = Iv[X],
D?̃[X] = (JvJ

−1)?1 = (IvI
−1)?̃[X], this leads to (IvI

−1)?̃ = D?̃. �

Corollary 2.16. Let D be an integral domain.

(1) D is a G-GCD domain if and only if D[X] is a G-GCD domain.
(2) D is a G-w-GCD domain if and only if D[X] is a G-wD[X]-GCD do-

main.

Proof. (1) If ? = dD, then ?1 = dD[X]. Indeed, the localizing system LdD

associated to dD is equal to {D} then LdD [X] = {D[X]}. Let E ∈ z(D[X]),
we have E(dD)1 = E : D[X] = E = EdD[X] . So, (dD)1 = dD[X].

(2) If ? = v, then ?̃ = w, vf = t and ?1 = ?Lt[X]. If D is G-w-GCD,
then D[X] is G-?1-GCD domain. By [12], ?1 � wD[X] so, D[X] is G-wD[X]-
GCD domain. By [3, Theorem 2.3] and the fact that M(wD[X]) = {Q[X] |Q ∈
M(t)}∪{Q ∈ Spec(D[X]) |Q∩D = (0) and c(Q)t = D} the converse holds. �

3. G-?-GCD Nagata rings

Let ? be a semistar operation on the integral domain D and let N(?) :=
ND(?) := {h ∈ D[X] |h 6= 0 and c(h)? = D?}. N(?) is a saturated multi-
plicative subset of D[X] and N(?) = N(?f ). Let Na(D, ?) := D[X]N(?) =

{ fg | f, g ∈ D[X]; g 6= 0, c(g)? = D?} be the Nagata ring of D with respect to

the semistar operation ?.

Proposition 3.1 ([7, Proposition 3.1]). Let ? be a semistar operation on the
integral domain D. Then:

(1) Max(Na(D, ?)) = {Q[X]N(?) |Q ∈M(?f )}.
(2) Na(D, ?) = ∩{DQ(X) |Q ∈M(?f )} = ∩{D[X]Q[X] |Q ∈M(?f )}.
(3) E?̃ = ENa(D, ?) ∩K for each E ∈ z(D).
(4) Na(D, ?) = Na(D, ?f ) = Na(D, ?̃).

Lemma 3.2. Let D be an integral domain, P ∈ Spec(D) and E a nonzero
subset of D. If EDP = aDP with a ∈ D, then there exists x ∈ E such that
EDP = xDP .

Proof. As EDP = aDP , there exist n ∈ N∗, ai ∈ E, bi ∈ D and s ∈ D\P such

that a =
∑n

i=1 aibi
s . Since ai ∈ E we get ai ∈ aDP which implies that there exist

di ∈ D and t ∈ D\P such that ai = adit . Hence 1 =
∑n

i=1 dibi
st . Since st 6∈ P ,

there exists i0 ∈ {1, . . . , n} such that di0bi0 6∈ P . Therefore
di0
t ∈ U(DP ) and

aDP = ai0DP . �

Theorem 3.3 ([1, Theorem 7]). Let ? be a semistar operation on the integral
domain D and f ∈ D[X]\{0} such that c(f) is ?f -locally principal. Then
c(f)Na(D, ?f ) = fNa(D, ?f ).
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Proof. (The proof uses arguments similar to those used in the proof of Theorem
7 of [1]. But the change of notation requires a new proof.)

Let f =
∑n
i=0 aiX

i with ai ∈ D. Since c(f) is ?f -locally principal, for each
M ∈ M(?f ) there exists x ∈ D such that c(f)DM = xDM . By Lemma 3.2,
there exists i0 ∈ {0, . . . , n} such that c(f)DM = ai0DM . As ai ∈ ai0DM , for
each i ∈ {0, . . . , n} there exists γi ∈ DM such that ai = ai0γi. In particular,
γi0 = 1. Let h = γ0 + γ1X + · · · + γnX

n then ai0h = f and c(h)DM = DM .
Hence hD[X]M [X] = D[X]M [X]. We get c(f)D[X]M [X] = ai0hD[X]M [X] =
fD[X]M [X]. Consequently c(f) ⊆ ∩{fD[X]M [X] |M ∈M(?f )} = fNa(D, ?f ).
Conversely, since f ∈ c(f)D[X] ⊆ c(f)Na(D, ?f ), we conclude that

fNa(D, ?f ) ⊆ c(f)Na(D, ?f ). �

Theorem 3.4. Let ? be a semistar operation on the integral domain D and X
be an indeterminate on D. Let f ∈ D[X]. Then the following statements are
equivalent:

(1) c(f) is ?f -locally principal.
(2) fNa(D, ?f ) = c(f)Na(D, ?f ).
(3) There exists an ideal I of D such that fNa(D, ?f ) = INa(D, ?f ).
(4) c(f)Na(D, ?f ) is a principal ideal of Na(D, ?f ).
(5) c(f)Na(D, ?f ) is a locally principal ideal of Na(D, ?f ).

Proof. (1)⇒ (2) follows from Theorem 3.3.
(2)⇒ (3) is clear.
(3) ⇒ (1) Suppose that fNa(D, ?f ) = INa(D, ?f ) with I an ideal of D.

Let M ∈M(?f ). Then ID[X]M [X] = fD[X]M [X]. By Lemma 3.2, there exists
a ∈ I such that fD[X]M [X] = aD[X]M [X]. As INa(D, ?f ) = fNa(D, ?f ) ⊆
c(f)Na(D, ?f ) then I ⊆ c(f)Na(D, ?f ) ∩K = (c(f))?̃ and again I ⊆ c(f)DM .

So there exist b ∈ c(f) and s ∈ D\M such that a = b
s . Hence fD[X]M [X] =

bD[X]M [X] which implies that f ∈ bD[X]M [X]. There exist g ∈ D[X] and h ∈
D[X]\M [X] such that f = b gh . As h 6∈M [X] then c(h)DM = DM . By applying

the Dedekind-Mertens lemma to f and h we get c(h)mc(fh) = c(h)m+1c(f),
where m = deg(f). Since c(h)DM = DM then c(f)DM = c(fh)c(h)mDM =
c(bg)DM ⊆ bDM ⊆ c(f)DM .

(2)⇒ (4) and (4)⇒ (5) are clear.
(5) ⇒ (1) Suppose that c(f)Na(D, ?f ) is locally principal, we prove that

c(f) is ?f -locally principal. Let M ∈ M(?f ) and J = c(f)Na(D, ?f ). Then
JNa(D, ?f )M [X]N(?f )

is a principal ideal of Na(D, ?f )M [X]N(?f )
= D[X]M [X].

So, JNa(D, ?f )M [X]N(?f )
= c(f)D[X]M [X] is a principal ideal of D[X]M [X].

By Lemma 3.2, there exists a ∈ c(f) such that c(f)D[X]M [X] = aD[X]M [X].
As f ∈ c(f)D[X]M [X], there exist k ∈ D[X] and h ∈ D[X]\M [X] such that

f = a kh . By applying the Dedekind-Mertens lemma to f and h ∈ D[X], we

get c(h)mc(fh) = c(h)m+1c(f), where m = deg(f). Since c(h)DM = DM , then
c(f)DM = c(fh)DM ⊆ aDM ⊆ c(f)DM . �
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Corollary 3.5. Let ? be a semistar operation on the integral domain D and I
be an ideal of D. Then the following statements are equivalent:

(1) I is ?̃-finite and ?f -locally principal.
(2) INa(D, ?f ) is a finitely generated, locally principal ideal.
(3) INa(D, ?f ) is a principal ideal of Na(D, ?f ).

Proof. (1) ⇒ (3) Since I is ?̃-finite, I ?̃ = (a0, . . . , an)?̃ = c(f)?̃ with f =∑n
i=0 aiX

i and IDM = c(f)DM for each M ∈M(?f ). As I is ?f -locally princi-

pal then c(f) is ?f -locally principal. On the other hand I ?̃ = INa(D, ?f )∩K =

c(f)?̃ = c(f)Na(D, ?f )∩K so, c(f)Na(D, ?f ) = INa(D, ?f ). By Theorem 3.4,
c(f)Na(D, ?f ) is a principal ideal of Na(D, ?f ).

(3)⇒ (2) is clear.
(2)⇒ (1) Suppose that INa(D, ?f ) is a finitely generated and locally prin-

cipal ideal, there exist f1, . . . , fn ∈ D[X] such that

INa(D, ?f ) = (f1, . . . , fn)Na(D, ?f ).

Since fi ∈ INa(D, ?f ), there exist ai,j ∈ I, fi,j ∈ D[X] and hi ∈ N(?f )

such that fi =
∑mi

j=1 ai,jfi,j

hi
. Let J = (ai,1, . . . , ai,mi

| i ∈ {1, . . . , n}) ⊆ I then

INa(D, ?f ) = JNa(D, ?f ). Hence I ?̃ = INa(D, ?f )∩K = JNa(D, ?f )∩K =

J ?̃. Since J ⊆ I, I is ?̃-finite, let f =
∑n
i=1

∑mi

j=1 biX
i. As INa(D, ?f ) =

c(f)Na(D, ?f ) is a locally principal ideal, then by Theorem 3.4, c(f) is ?f -
locally principal that is to say JDM = c(f)DM is a principal ideal for each
M ∈M(?f ). Since I ?̃ = J ?̃, for each M ∈M(?f ), IDM = JDM is a principal
ideal which implies that I is a ?f -locally principal ideal. �

Proposition 3.6. Let ? be a semistar operation on the integral domain D and
N = {f ∈ D[X,Y ] | cD(f)?f = D?f }. Then

(1) N = D[X,Y ]\ ∪ {M [X,Y ] |M ∈ M(?f )} is a saturated multiplicative
subset of D[X,Y ].

(2) D[X,Y ]N = Na(D, ?f )(Y ) where Na(D, ?f )(Y ) is the Nagata ring of
Na(D, ?f ) associated to d.

Proof. (1) Let f ∈ N then f 6∈M [X,Y ] for eachM ∈M(?f ) so, f ∈ D[X,Y ]\∪
{M [X,Y ] |M ∈ M(?f )}. Conversely, let f ∈ D[X,Y ]\ ∪ {M [X,Y ] |M ∈
M(?f )}. If c(f)?f 6= D?f , there exists M ∈ M(?f ) such that c(f) ⊆ M
which implies that f ∈M [X,Y ] which is a contradiction. So c(f)?f = D?f and
N = D[X,Y ]\∪{M [X,Y ] |M ∈M(?f )}. HenceN is a saturated multiplicative
subset of D[X,Y ].

(2) Let R = Na(D, ?f ) and f ∈ R(Y ) so f = f1
f2

with f1, f2 ∈ R[Y ], f2 6= 0

and cR(f2) = R. Let f1 =
∑n

i=0 f1,iY
i

h1
with h1 ∈ D[X], c(h1)?f = D?f and

f1,i ∈ D[X]. Let f2 =
∑m

j=0 f2,jY
j

h2
with f2,j ∈ D[X], c(h2)?f = D?f and

(f2,0, . . . , f2,m)N(?f ) = cR(f2) = Na(D, ?f ). Let g =
∑m
j=0 f2,jY

j ∈ D[X,Y ],

cNa(D,?f )(g) = Na(D, ?f ) = (f2,0, . . . , f2,m)N(?f ), there exists h ∈ N(?f )
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such that h ∈ (f2,0, . . . , f2,m)D[X]. So cD(h) ⊆ cD(f2,0) + · · · + cD(f2,m) =
cD(g) ⊆ D which implies that D?f = cD(h)?f ⊆ cD(g)?f ⊆ D?f and again

cD(g)?f = D?f . Then gh1 ∈ N therefore f = f1
f2
∈ D[X,Y ]N . Conversely,

let f = f1
f2
∈ D[X,Y ]N with f1 ∈ D[X,Y ] and f2 ∈ N = D[X,Y ]\ ∪

{M [X,Y ] |M ∈ M(?f )}. Let f2 =
∑m
j=0 f2,jY

j with f2,j ∈ D[X] for each

j ∈ {0, . . . ,m}. If cNa(D,?f )(f2) 6= Na(D, ?f ), there exists M ∈ M(?f ) such
that cNa(D,?f )(f2) ⊆ M [X]N(?f ) which implies that (f2,0, . . . , f2,m) ⊆ M [X].
Hence f2 ∈M [X,Y ] which is impossible. Then cNa(D,?f )(f2) = Na(D, ?f ) so,

f = f1
f2
∈ Na(D, ?f )(Y ). �

Theorem 3.7. Let ? be a semistar operation on the integral domain D and X
be an indeterminate on D. Then every nonzero finitely generated and locally
principal ideal of Na(D, ?f ) is a principal ideal.

Proof. Let I = (f1, . . . , fn)Na(D, ?f ) 6= 0 such that I is a locally principal
ideal, where fi ∈ D[X] for each i ∈ {1, . . . , n}. Let g = f1 + f2Y + · · · +
fnY

n−1 ∈ D[X,Y ], R = Na(D, ?f ) and K1 the quotient field of R. So, cR(g) =
(f1, . . . , fn)R = I is locally principal in R. By Theorem 3.3, INa(D, ?f )(Y ) =
cR(g)R(Y ) = gR(Y ). By Proposition 3.6, Na(D, ?f )(Y ) = D[X,Y ]N then
ID[X,Y ]N = gD[X,Y ]N . Let mi = deg(fi) for each i ∈ {1, . . . , n} and f =
f1 + f2X

m1+1 + f3X
m1+m2+2 + · · · + fnX

m1+···+mn−1+(n−1) ∈ D[X]. Hence
cD(f) = cD(g) and f ∈ ID[X,Y ]N = gD[X,Y ]N , there exist h1 ∈ D[X,Y ]
and h2 ∈ N such that f = g h1

h2
. We prove that cD(h1)?f = D?f . Suppose

that cD(h1)?f 6= D?f , there exists P ∈ M(?f ) such that cD(h1) ⊆ P . Let
(V,M) be a valuation overring of D such that M ∩ D = P . If cV (h2) ⊆ M ,
then cD(h2) ⊆ M ∩D = P which is impossible. As V is a valuation domain,
cV (fh2) = cV (f)cV (h2). So cV (f) = cV (f)cV (h2) = cV (gh1) = cV (g)cV (h1) =
cV (f)cV (h1). By Nakayama’s lemma, either cV (f) = (0) or cV (h1) = V and
since f 6= 0 then cV (h1) = V which is impossible because cV (h1) = cD(h1)V ⊆
PV ⊆ MV = M . Then cD(h1)?f = D?f and fNa(D, ?f )(Y ) = fD[X,Y ]N =

g h1

h2
D[X,Y ]N = gNa(D, ?f )(Y ) = I(Y ). Hence fNa(D, ?f ) = I. �

Proposition 3.8 ([12, Proposition 3.4 and Lemma 3.5]). Let ? be a semistar
operation on the integral domain D. Let ∗ := ?4 be the spectral semistar
operation on D[X] defined by the set 4 := {P [X] |P ∈M(?f )} and let i be the
canonical embedding of D[X] in Na(D, ?f ). Then

(1) ?1 := ?L?f [X] ≤ ∗.
(2) ∗i = dNa(D,?f ).

Theorem 3.9. Let ? be a semistar operation satisfying the property (H). The
following statements are equivalent:

(1) D is a G-?̃-GCD domain.
(2) D[X] is a G-?1-GCD domain.
(3) D[X] is a G-∗-GCD domain.
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(4) Na(D, ?f ) is a G-GCD domain.
(5) Na(D, ?f ) is a GCD domain.

Proof. (1)⇐⇒ (2) follows from Theorem 2.15.
(2) =⇒ (3) If D[X] is a G-?1-GCD domain and since ?1 ≤ ∗, D[X] is a

G-∗-GCD domain.
(3) =⇒ (4) If D[X] is a G-∗-GCD domain, by [4, Remark 4.11(3)], (D[X])∗̃

is a G-∗̃i-GCD domain. By [9, Lemma 3.8], ∗ is a stable semistar operation of
finite type which implies by [12, Proposition 1.5], that ∗i is a stable semistar
operation of finite type. Then (D[X])∗ is a G-∗i-GCD domain and by [12,
Proposition 1.6(2)], (D[X])∗ = Na(D, ?f ). Hence Na(D, ?f ) is a G-GCD
domain.

(4) =⇒ (5) Let I ∈ f(Na(D, ?f )). Since Na(D, ?f ) is a G-GCD domain,
Iv is an invertible ideal. So Iv is a finitely generated and locally principal
ideal of Na(D, ?f ). By Theorem 3.7, Iv is a principal ideal of Na(D, ?f ) then
Na(D, ?f ) is a GCD domain.

(5) =⇒ (1) If Na(D, ?f ) is a GCD domain, we prove that D is a G-?̃-
GCD domain. Let I ∈ f(D) then (INa(D, ?f ))−1 = I−1Na(D, ?f ). So
IvNa(D, ?f )=(INa(D, ?f ))v. In fact, let f ∈ (INa(D, ?f ))v. Since Na(D, ?f )
is a GCD domain and I ∈ f(D), (INa(D, ?f ))−1 is invertible in Na(D, ?f ).
Hence (INa(D, ?f ))−1 ∈ f(Na(D, ?f )), there exists g ∈ N(?f ) such that
fg(INa(D, ?f ))−1 = fgI−1Na(D, ?f ) ⊆ D[X] so, I−1c(fg) ⊆ D and c(fg) ⊆
Iv. fg ⊆ IvD[X] which implies that f ∈ IvNa(D, ?f ). Conversely, let x ∈ Iv
then x(INa(D, ?f ))−1 ⊆ Na(D, ?f ). Hence x∈ (INa(D, ?f ))v. As Na(D, ?f )
is a GCD domain, (INa(D, ?f ))v is invertible in Na(D, ?f ). Hence

IvI
−1Na(D, ?f ) = Na(D, ?f ) and

(IvI
−1)?̃ = IvI

−1Na(D, ?f ) ∩K = Na(D, ?f ) ∩K = D?̃. �

If ? = d, then we recover the result of [2, Theorem 2].

Corollary 3.10. Let D be an integral domain. The following statements are
equivalent:

(1) D is a G-GCD domain.
(2) D[X] is a G-GCD domain.
(3) D(X) is a G-GCD domain.
(4) D(X) is a GCD domain.
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