• Title/Summary/Keyword: Convex mapping

Search Result 134, Processing Time 0.031 seconds

NON-CONVEX HYBRID ALGORITHMS FOR A FAMILY OF COUNTABLE QUASI-LIPSCHITZ MAPPINGS CORRESPONDING TO KHAN ITERATIVE PROCESS AND APPLICATIONS

  • NAZEER, WAQAS;MUNIR, MOBEEN;NIZAMI, ABDUL RAUF;KAUSAR, SAMINA;KANG, SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.313-321
    • /
    • 2017
  • In this note we establish a new non-convex hybrid iteration algorithm corresponding to Khan iterative process [4] and prove strong convergence theorems of common fixed points for a uniformly closed asymptotically family of countable quasi-Lipschitz mappings in Hilbert spaces. Moreover, the main results are applied to get the common fixed points of finite family of quasi-asymptotically nonexpansive mappings. The results presented in this article are interesting extensions of some current results.

COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS BY ONE-STEP ITERATION PROCESS IN CONVEX METRIC SPACES

  • Abbas, Mujahid;Khan, Safeer Hussain;Kim, Jong-Kyu
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.693-702
    • /
    • 2010
  • We study one-step iteration process to approximate common fixed points of two nonexpansive mappings and prove some convergence theorems in convex metric spaces. Using the so-called condition (A'), the convergence of iteratively defined sequences in a uniformly convex metric space is also obtained.

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2011
  • In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo;Park, Jong-Seo;Park, Eun-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • Let E be a uniformly convex Banach space with a uniformly G$\hat{a}teaux differentiable norm, C a nonempty closed convex subset of $E, T : C \to E$ a nonexpansive mapping, and Q a sunny nonexpansive retraction of E onto C. For $u \in C$ and $t \in (0,1)$, let $x_t$ be a unique fixed point of a contraction $R_t : C \to C$, defined by $R_tx = Q(tTx + (1-t)u), x \in C$. It is proved that if ${x_t}$ is bounded, then the strong $lim_{t\to1}x_t$ exists and belongs to the fixed point set of T. Furthermore, the strong convergence of ${x_t}$ in a reflexive and strictly convex Banach space with a uniformly G$\hat{a}$teaux differentiable norm is also given in case that the fixed point set of T is nonempty.

  • PDF

Some characterizations of a mapping defined by interval-valued Choquet integrals

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • Note that Choquet integral is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. In this paper, we consider interval-valued Choquet integrals with respect to fuzzy measures(see [4,5,6,7]). Using these Choquet integrals, we define a mappings on the classes of Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will investigate some relations between m-convex mappings ${\phi}$ on the class of Choquet integrable functions and m-convex mappings $T_{\phi}$, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.

WEAK AND STRONG CONVERGENCE FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Gang-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.799-813
    • /
    • 2012
  • In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

Fixed Point Theorems in Product Spaces

  • Bae, Jong Sook;Park, Myoung Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1993
  • Let E and F be Banach spaces with $X{\subset}E$ and $Y{\subset}F$. Suppose that X is weakly compact, convex and has the fixed point property for a nonexpansive mapping, and Y has the fixed point property for a multivalued nonexpansive mapping. Then $(X{\oplus}Y)_p$, $1{\leq}$ P < ${\infty}$ has the fixed point property for a multi valued nonexpansive mapping. Furthermore, if X has the generic fixed point property for a nonexpansive mapping, then $(X{\oplus}Y)_{\infty}$ has the fixed point property for a multi valued nonexpansive mapping.

  • PDF

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).

Noor Iterations with Error for Non-Lipschitzian Mappings in Banach Spaces

  • Plubtieng, Somyot;Wangkeeree, Rabian
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.201-209
    • /
    • 2006
  • Suppose C is a nonempty closed convex subset of a real uniformly convex Banach space X. Let T : $C{\rightarrow}C$ be an asymptotically nonexpansive in the intermediate sense mapping. In this paper we introduced the three-step iterative sequence for such map with error members. Moreover, we prove that, if T is completely continuous then the our iterative sequence converges strongly to a fixed point of T.

  • PDF