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COMMON FIXED POINTS OF ASYMPTOTICALLY

NONEXPANSIVE MAPPINGS BY ONE-STEP ITERATION

PROCESS IN CONVEX METRIC SPACES

Mujahid Abbas, Safeer Hussain Khan and Jong Kyu Kim

Abstract. We study one-step iteration process to approximate common

fixed points of two nonexpansive mappings and prove some convergence
theorems in convex metric spaces. Using the so-called condition (A′), the

convergence of iteratively defined sequences in a uniformly convex metric

space is also obtained.

1. Introduction

Let us recall some definitions:

Definition 1.1. [15] Let (X, d) be a metric space. A mapping W : X ×
X × [0, 1] −→ X is said to be a convex structure on X if for each (x, y, λ) ∈
X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space X together with the convex structure W is called a convex
metric space.

Definition 1.2. Let X be a convex metric space. A nonempty subset F of X
is said to be convex if W (x, y, λ) ∈ F whenever (x, y, λ) ∈ F × F × [0, 1].

Takahashi [15] has shown that open spheres B(x, r) = {y ∈ X : d(y, x) < r}
and closed spheres B[x, r] = {y ∈ X : d(y, x) ≤ r} are convex. All normed
spaces and their convex subsets are convex metric spaces. But there are many
examples of convex metric spaces which are not embedded in any normed space
(see [15]).
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Definition 1.3. [1] A convex metric space X is said to be uniformly convex if
for any x, y, a ∈ X,

[d(a,W (x, y,
1

2
))]2 ≤ 1

2
{1− δ( d(x, y)

max{d(a, x), d(a, y)}
)}([d(a, x)]2 + [d(a, y)]2)

where the function δ is strictly increasing function on the set of strictly positive
numbers and δ(0) = 0.

Definition 1.4. Let X be a convex metric space, C a nonempty convex subset
of X and T : C → C a mapping. T is called an asymptotically nonexpansive
mapping if there is a sequence {kn} ⊂ [1,∞) such that

d(Tnx, Tny) ≤ knd(x, y)

for all x, y ∈ C and for all n ∈ N where
∑∞

k=1 (kn − 1) <∞.

A point x ∈ C is a fixed point of a mapping T provided Tx = x. Let C
be a nonempty closed bounded convex subset of a uniformly convex complete
metric space X and T : C → C be an asymptotically nonexpansive mapping,
then T has a fixed point [3] ( see also, [4] ) . Different iteration processes
have been used to approximate fixed points of nonexpansive mappings. Mann
iteration process [12] and Ishikawa iteration process [9] are two well known
iteratively defined processes which are generally used to solve the fixed point
problems of different mappings. An iteration process used to approximate
common fixed points of two mappings was introduced by [6]. Note that the
notion of approximating common fixed points of mappings has a direct link with
the minimization problem (see, for example, [17]). The study of convergence
of iterative process in a convex metric space is a recent development (see for
example, [3], [5], [7] and [14]). Recently, Wang and Liu [21] obtained the
convergence of a sequence generated through an Ishikawa type iteration process
with errors to a common point of two uniformly quasi-Lipshitzian mappings in
convex metric spaces. The aim of this paper is to use a simple iterative process
to study the convergence problem of a sequence thus obtained to common
fixed points of two asymptotically nonexpansive mapping in a complete convex
metric space.

2. Preparatory Lemmas

In this section, we prove some lemmas for development of our convergence
results. In the sequel, we write F = F (S) ∩ F (T ) for the set of all common
fixed points of the mappings S and T. For S, T : C → C, our iteration process
reads as follows: {

x1 = x ∈ C,
xn+1 = W (Snxn, T

nxn,
1
2 ), ∀n ∈ N.

(2.1)

Now, we state the following useful lemma.
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Lemma 2.1. [11] Let {δn}, {βn}, and {γn} be three sequences of nonnegative
numbers such that

βn ≥ 1 and δn+1 ≤ βnδn + γn for all n ∈ N.

If
∞∑

n=1
γn <∞ and

∞∑
n=1

(βn − 1) <∞, then limn→∞ δn exists.

Next, we prove the following lemma which is a generalization of Lemma 4
of [16].

Lemma 2.2. Let X be a uniformly convex metric space. If {xn} and {yn} are
sequences in X such that for some z ∈ X,

lim sup
n→∞

d(xn, z) ≤ r, lim sup
n→∞

d(yn, z) ≤ r

and

lim
n→∞

d(z,W (xn, yn,
1

2
)) = r

for some r ≥ 0. Then lim
n→∞

d(xn, yn) = 0.

Proof. For r = 0, The proof is obvious. Now take r > 0. Assume on contrary
that lim

n→∞
d(xn, yn) 6= 0 which implies that there exist subsequences {xm} and

{ym} of {xn} and {yn} respectively and ε > 0 such that d(xm, ym) ≥ ε for
all m ∈ N. Since lim sup

m→∞
d(xm, z) ≤ r and lim sup

m→∞
d(ym, z) ≤ r, there exists

m0 ∈ N such that d(xm, z) ≤ r + ε and d(ym, z) ≤ r + ε for m ≥ m0. Also,

lim
m→∞

d(z,W (xm, ym,
1

2
)) = r. Note that

d(z,W (xm, ym,
1

2
)) ≤ 1

2
d(z, xm) +

1

2
d(z, ym)

≤ max{d(z, xm), d(z, ym)}

Therefore, either lim inf([d(z, xm)]2) > 0 or lim inf([d(z, ym)]2) > 0. Since X is
uniformly convex, therefore

[d(z,W (xm, ym,
1

2
))]2 ≤ 1

2
{1− δ( d(xm, ym)

max{d(z, xm), d(z, ym)}
)}

×([d(a, x)]2 + [d(a, y)]2)

≤ 1

2
([d(z, xm)]2 + [d(z, ym)]2)

−1

2
δ(

ε

r + ε
)([d(z, xm)]2 + [d(z, ym)]2)
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Now taking limsup on both the sides, we get

r2 = lim sup
m→∞

[d(z,W (xm, ym,
1

2
))]2

≤ 1

2
lim sup
m→∞

([d(z, xm)]2 + [d(z, ym)]2)− 1

2
δ(

ε

r + ε
)

× lim inf([d(z, xm)]2 + [d(z, ym)]2)

≤ 1

2
lim sup
m→∞

([d(z, xm)]2 + [d(z, ym)]2)

−1

2
δ(

ε

r + ε
)(lim inf([d(z, xm)]2 + lim inf[d(z, ym)]2))

<
1

2
(r2 + r2) = r2

which is a contradiction. The proof is complete. �

Lemma 2.3. Let C be a nonempty closed convex subset of a convex metric
space X and S, T : C → C be two asymptotically nonexpansive mappings. Let
{xn} be the sequence defined in (2.1). If F 6= φ, then lim

n→∞
d(xn, x

∗) exists for

all x∗ ∈ F.

Proof. Let x∗ ∈ F. Then we have

d(xn+1, x
∗) = d(W (Snxn, T

nxn,
1

2
), x∗)

≤ 1

2
d(Snxn, S

nx∗) +
1

2
d(Tnxn, T

nx∗)

≤ 1

2
knd(xn, x

∗) +
1

2
knd(xn, x

∗)

= knd(xn, x
∗).

Thus, by Lemma 2.1, lim
n→∞

d(xn, x
∗) exists for each x∗ ∈ F. �

Lemma 2.4. Let X be a uniformly convex metric space and C be a nonempty
closed convex subset of X. Let S, T : C → C be asymptotically nonexpansive
mappings and {xn} be the sequence as defined in (2.1) satisfying d(xn, S

nxn) ≤
d(Snxn, T

nxn), n ∈ N. If F 6= ∅, then

lim
n→∞

d(Sxn, xn) = 0 = lim
n→∞

d(Txn, xn).

Proof. By Lemma 2.3, lim
n→∞

d(xn, x
∗) exists. Suppose that there exists c ≥ 0

such that limn→∞ d(xn, x
∗) = c. Then d(Snxn, x

∗) ≤ knd(xn, x
∗) implies that

lim sup
n→∞

d(Snxn, x
∗) ≤ c.
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Similarly,
lim sup
n→∞

d(Tnxn, x
∗) ≤ c.

Further, lim
n→∞

d(xn+1, x
∗) = c gives that,

lim
n→∞

d(W (Snxn, T
nxn,

1

2
), x∗) = c.

Applying Lemma 2.2, we have

lim
n→∞

d(Snxn, T
nxn) = 0. (2.2)

But then by the condition d(xn, S
nxn) ≤ d(Snxn, T

nxn),

lim sup
n→∞

d(xn, S
nxn) ≤ 0.

That is,
lim
n→∞

d(xn, S
nxn) = 0. (2.3)

Also then
d(xn, T

nxn) ≤ d(xn, S
nxn) + d(Snxn, T

nxn)

implies that
lim
n→∞

d(xn, T
nxn) = 0. (2.4)

Now by definition, d(xn+1, T
nxn) ≤ 1

2d(Snxn, T
nxn) so that

lim
n→∞

d(xn+1, T
nxn) = 0. (2.5)

Then
d(xn+1, S

nxn) ≤ d(xn+1, T
nxn) + d(Tnxn, S

nxn)

implies

lim
n→∞

d(xn+1, S
nxn) = 0. (2.6)

Similarly, by

d(xn+1, xn) ≤ d(xn+1, T
nxn) + d(xn, T

nxn),

we have

lim
n→∞

d(xn+1, xn) = 0. (2.7)

Next,

d(xn+1, Sxn+1) ≤ d(xn+1, S
n+1xn+1) + d(Sn+1xn+1, S

n+1xn)

+d(Sn+1xn, Sxn+1)

≤ d(xn+1, S
n+1xn+1) + kn+1d(xn+1, xn)

+k1d(Snxn, xn+1)

yields
lim
n→∞

d(xn, Sxn) = 0. (2.8)
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Moreover,

d(Sxn+1, Txn+1) ≤ d(Sxn+1, S
n+1xn+1) + d(Sn+1xn+1, T

n+1xn+1)

+d(Tn+1xn+1, T
n+1xn) + d(Tn+1xn, Txn+1)

≤ k1d(xn+1, S
nxn+1) + d(Sn+1xn+1, T

n+1xn+1)

+kn+1d(xn+1, xn) + k1d(Tnxn, xn+1)

≤ k1 (d(xn+1, S
nxn) + d(Snxn, S

nxn+1))

+d(Sn+1xn+1, T
n+1xn+1) + kn+1d(xn+1, xn)

+k1d(Tnxn, xn+1)

≤ k1 (d(xn+1, S
nxn) + knd(xn, xn+1))

+d(Sn+1xn+1, T
n+1xn+1) + kn+1d(xn+1, xn)

+k1d(Tnxn, xn+1)

gives by (2.2) , (2.5) , (2.6) and (2.7) that

lim
n→∞

d(Sxn, Txn) = 0. (2.9)

In turn, by (2.8) and (2.9) we get

lim
n→∞

d(xn, Txn) = 0.

This completes the proof of the lemma. �

3. Convergence Theorems

We approximate common fixed points of the mappings S and T through
convergence of the sequence {xn} defined in (2.1) .

The first convergence result in an arbitrary convex metric space goes as
follows:

Theorem 3.1. Let C be a nonempty compact and convex subset of a uniformly
convex metric space X and S, T and {xn} be as in Lemma 2.4. If F 6= ∅, then
there is a subsequence of {xn} which converges to a common fixed point of S
and T .

Proof. Since lim
n→∞

d(Sxn, xn) = 0 = lim
n→∞

d(Txn, xn) and C is compact, we

have subsequence {xnj
} of {xn} with xnj

→ q in C. Continuity of T and S
imply Txnj → Tq and Sxnj → Sq, as nj →∞. Thus, d(Sq, q) = 0 = d(Tq, q).
Therefore, Tq = Sq = q. �

Theorem 3.2. Let C be a nonempty closed convex subset of a complete
convex metric space X, {xn}, S and T be as in Lemma 2.4. If F 6= ∅,
then {xn} converges to a common fixed point of S and T if and only if
lim infn→∞ d(xn, F ) = 0, where d(x, F ) = inf{d(x, p) : p ∈ F}.
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Proof. Necessity is obvious. Conversely, suppose that lim inf
n→∞

d(xn, F ) = 0. As

in Lemma 2.3, we have

d(xn+1, p) ≤ knd(xn, p).

This implies

d(xn+1, F ) ≤ knd(xn, F ),

so that lim
n→∞

d(xn, F ) exists. Then by the hypothesis,

lim
n→∞

d(xn, F ) = 0.

Next, we show that {xn} is a Cauchy sequence in C. Let ε > 0 be arbitrarily
chosen. Put kn = 1+un. Then

∑∞
n=1 (kn − 1) <∞ implies that

∑∞
n=1 un <∞.

Now from d(xn+1, x
∗) ≤ knd(xn, x

∗) for all x∗ ∈ F combined with 1+x ≤ ex
for all x ≥ 0 , we have

d(xn+m, x
∗) ≤ kn+m−1d(xn+m−1, x

∗)

= (1 + un+m−1) d(xn+m−1, x
∗)

≤ eun+m−1d(xn+m−1, x
∗)

...

≤
(
e
∑n+m−1

i=n ui

)
d(xn, x

∗)

≤
(
e
∑∞

i=1 ui

)
d(xn, x

∗)

for all x∗ ∈ F and for all m,n ∈ N.

Since
∑∞

n=1 un <∞, there is a positive real number M such that e
∑∞

i=1 ui =
M. Thus

d(xn+m, x
∗) ≤Md(xn, x

∗)

for all x∗ ∈ F and for all m,n ∈ N.

Next, from lim
n→∞

d(xn0
, F ) = 0, there exists a positive integer n0 such that

d(xn0 , F ) <
ε

M + 1
.

This says that there exists a p ∈ F such that

d(xn0 , p) <
ε

M + 1
.

Thus for all m ∈ N,
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d(xn0+m, xn0
) ≤ d(xn0+m, p) + d(xn0

, p)

≤ Md(xn0
, p) + d(xn0

, p)

< (M + 1)

(
ε

M + 1

)
= ε.

Hence {xn} is a Cauchy sequence in a closed subset C of a complete convex
metric space X and so it must converge to a point q in C. Now, lim

n→∞
d(xn, F ) =

0 gives that d(q, F ) = 0. Since F is closed, so we have q ∈ F. �

Khan and Fukhar-ud-din [8] introduced the so-called Condition (A′) and
gave a bit improved version of it in [8]. We give its metric analogue as follows:

Definition 3.3. Two mappings S, T : C → C are said to satisfy the Condition
(A′) if there exists a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0,
f(r) > 0 for all r ∈ (0,∞) such that either d(x, Tx) ≥ f(d(x, F )) or d(x, Sx) ≥
f(d(x, F )) for all x ∈ C.

We use the Condition (A′) to study convergence of {xn} defined in (2.1).

Theorem 3.4. Let X be a uniformly complete convex metric space, C and
{xn} be as in Lemma 2.4. Let S, T : C → C be two asymptotically nonex-
pansive mappings satisfying the Condition (A′). If F 6= ∅, then {xn} converges
strongly to a common fixed point of S and T.

Proof. By Lemma 2.3, lim
n→∞

d(xn, x
∗) exists for all x∗ ∈ F . Let this limit be

c, where c ≥ 0. If c = 0, there is nothing to prove. Suppose that c > 0. Now,
d(xn+1, x

∗) ≤ knd(xn, x
∗) gives that

inf
x∗∈F

d(xn+1, x
∗) ≤ kn inf

x∗∈F
d(xn, x

∗),

which means that

d(xn+1, F ) ≤ knd(xn, F )

and so lim
n→∞

d(xn, F ) exists. By using the Condition (A′), either

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

d(xn, Txn) = 0

or

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

d(xn, Sxn) = 0.

In both the cases, we have

lim
n→∞

f(d(xn, F )) = 0.

Since f is a nondecreasing function and f(0) = 0, it follows that

lim
n→∞

d(xn, F ) = 0.
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The rest of the proof follows the pattern of the above theorem and is therefore
omitted. �
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