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Fixed Point Theorems in Product Spaces

Jong Sook Bae and Myoung Sook Park

ABSTRACT. Let E and F be Banach spaces with X C E and Y G F, 

Suppose that X is weakly compact, convex and has the fixed point 

property for a nonexpansive mapping, and Y has the fixed point prop

erty for a multivalued nonexpansive mapping. Then (X ® Y)p, 1 < 

p < oo has the fixed point property for a multivalued nonexpansive 

mapping. Furthermore, if X has the generic fixed point property for 

a nonexpansive mapping, then (X㊉ Y)8 has the fixed point property 

for a multivalued nonexpansive mapping.

1 .Introduction.
Let E and F be Banach spaces. A mapping T : E —> F is nonex

pansive if IITx —幻/II < ||z — y||. A multivalued mapping T : E F 
is nonexpansive if 丑0以二1寸)< ||z — j/||, where H is the Hausdorff 
metric induced by the norm of F. We recall that a nonempty sub
set X of E is said to have the fixed point property for (multivalued) 
nonexpansive mappings if every (multivalued, resp.) nonexpansive 
mapping T : X X has a fixed point, and the space E has the fixed 
point property if every weakly compact convex subset of X has the 
fixed point property.

Now suppose E and F are Banach spaces with X C E and Y C F 
and let E ® F be the product spaces. For 1 < p < oo and € 
E ® F, we set

ll(M/)||, = 이끼1% + ||帰”
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and

I3，)||8 = max{||께E, |"||f}.

In[l], W.A.Kirk and Y.Sternfeld showed that if X and Y are bounded, 
closed and convex subsets of a uniformly convex Banach space E and
Y is separable, then the assumption that Y has the fixed point prop
erty for a nonexpansive mapping assures the same is true of (X& Y)。。. 

In [2], if E and F be Banach spaces with X C E and Y C and if 
both X and Y have the fixed point property for nonexpansive map
pings, then (X ® Y)p has the fixed point property for nonexpansive 
mappings for 1 < p < oo. Also it was shown in [3] that if E has

X-norm,。尹 X C E is weakly compact and convex, and if X 
and Y have the fixed point property for nonexpansive mappings, 난len 
(X © y)oo has the fixed point property for nonexpansive mappings. 
Moreover, T.Kuczumow[4] improved [3] by assuming that X has the 
generic fixed point property.

In this paper we prove fixed point theorems for multivalued non
expansive mappings in (X ® y)p, 1 < p < oo.

2.Results.
Now we state our first theorem.

THEOREM 1. Let E and F be Banach spaces with X C E and
Y C F. Suppose that X is weakly compact, convex and has the 
Sxed point property for nonexpansive mappings, and Y has the fixed 
point property for multivalued nonexpansive mappings. H 幻：(X $ 
y)P t X is a nonexpansive mapping and : (X e Y)p t Y 
is a multivalued nonexpansive mapping with closed values, then a 
mapping 끄 = (Ti^T2) : (X ® Y)p t (X ® Y)p which is de&ned by 
(7"&)(明/)=(幻(z "/),&(£,;)) has a fixed point for 1 < p < oo.

Proof. For each fixed g C 匕 we define 与：X t X by Ty(x)=
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Ti(^, y), z C X. Then Ty is nonexpansive and has a fixed point which 
we denote by y(l).

Now define 再：Y t Y by 耳(g)=工血⑴，g)・ Then for y,z £ Y,

H(瓦(g),瓦⑵)P = H(頌g⑴浦),頌z(l),z))P

=H((R, r2)(y(l), g),(幻,&)(z(l), z))，， 

시 |T血⑴浏) —賢 (z ⑴，이 |P

< llv(i) — <i)F + Ik 一 끼F — l|g(i) — z(i)俨 

=1出一2俨

Therefore, is a multivalued nonexpansive mapping, and hence 
has a fixed point yQ G K, that is yQ G 或(go) = l2(J/o(l),的).It follows 
that (go(l),，o) is a fixed point of T, since (%⑴,啊)e (2i(?/o(l), !/o), 
頌，o ⑴, go)) = (幻您 )(，o(l),yo) = 꼬(的 (l)，，o)・

A nonempty, convex and weakly compact subset X of a Banach 
space E has the generic fixed point property for nonexpansive map
pings if for every nonexpansive mapping T : X -스 X and every 
nonempty convex closed subset XQ C X with TXq C -Yo, we have 
Xo PI Fix(T)尹知 where Fix(「)= {x e X;Tx = x}.

The following lemma is needed to prove our second result.

LEMMA (T.Kuczumow [4]). Let E be a Banach space and let Y 
be a metric space. Suppose that X G E is weakly compact, convex 
and has the generic Axed point property for nonexpansive mappings. 
If F : (X ® Y)8 t X is a nonexpansive mapping, then there exists a 
nonexpansive mapping r : (X ® Y)8 t X such that F(r(a;, tz),u)= 
r(x^u) for (x^u) € (X ㊉丫)8 and r(x,u)=x when F(x,u)=x.

THEOREM 2. Let E and F be Banach spaces with X G E and 
Y C F. Suppose that X is weakly compact and convex, and has 
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the generic fixed point property for nonexpansive mappings and Y 
has the fixed point property for multivalued nonexpansive mappings. 
If Ti(X ® y)oo 一+ X is a nonexpansive mapping and 处：(X £ 
Y)8 V is a multivalued nonexpansive mapping, then a map- 
pimg T = (Ti,72): (X ® Y)8 -스 (X £ Y)8 which is de&ied by 
(7i,72)(x,i/) = (R(:乌 g)) has a fixed point.

Proof. Let T = (TJ&) : (X ㊉ T (X ® Y)^ be a mapping 
such that Ti(X ® Y)8 t X is nonexpansive. Then by the Lemma, 
we can obtain a nonexpansive mapping 尸：(X ㊉ Y)8 t X such 
that 7i(r(a;,2/)) = r(x,y) for (x,y) W (X £ Y)8 and r(x,y) = x 
when 7i(a;, j/) = x. Now for a fixed xq G X, define : Y Y by 
耳(g) = T2(r(XQ,y\y), y^Y. Then for g, z € 匕

H(变(g),变(z)) = H(T2(r(xQ, y), y), T2(r(xQ,z), z}

< max{||z'(血浦) 一 厂(zo,z)||, ||g — 기| 

彳1，一해・

Therefore 处 is a multivalued nonexpansive mapping, and hence 
has a fixed point 啊 E 匕 that is yQ G &(go)=工2(厂(瓦,啊),啊)・ This 
implies that

(7•(観浦o),，o) G(ri(r(x0,!/o), J/o),T2(r(xo,yo\y0)) = 꼬(7•(边3o),Vo)・

This completes the proof.
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