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Abstract

Note that Choquet integral

Lebesgue integral are equal if a fuzzy measure is a classical measure.
integrals with respect to fuzzy measures (see [4,5,6,7]). Using these Choquet integrals, we define a mappings on

is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and

In this paper, we consider interval-valued Choquet
the classes of

Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will

investigate some relations between m-convex mappings @ on the class of Choquet integrable functions and m-convex mappings

T, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.
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1. Introduction

Sugeno et al. [8,9] have studied some characterizations of
Choquet integrals which is a generalized concept of Lebesgue
integral, because two definitions of Choquet integral and
Lebesgue integral are equal if a fuzzy measure is a classical
measure. And also Choquet integral is often used in in-
formation nonlinear aggregation tool(see[2,8,9]).

In this paper, we define fuzzy mappings on the classes of
Choquet integrable functions and give an example of fuzzy
mapping defined by closed set-valued Choquet integrals. In
Section 2, we list various definitions and notations which are
used in the proof of our results. In Section 3, using these def-
initions and properties, we investigate some relations between
m-convex mappings @ on the class of Choquet integrable
functions and m-convex mappings T, defined by the class of
closed set-valued Choquet integrals with respect to fuzzy
measures.

2. Preliminaries and definitions

Throughout this paper, we assume that X is a locally
compact Hausdorff space, K is the class of continuous func-
tions on X with compact support, {2 is the class of Borel
sets, C' is the class of compact sets, and O is the class open
set. The class of measurable functions is denoted by M and
the class of non-negative measurable functions is denoted by
M*, Let (X,82,11) be a fuzzy complete measure space.

A fuzzy measure [t on a measurable space is a set function
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m-concave, interval-Choquet integral.

p: 20, 0] satisfying

(M p(2)=0,

@ w(4) <p(B),

whenever A,B € 2, AC B,

A fuzzy measure 4 is said to be lower semi-continuous if
for every increasing sequence { A , } of measurable sets, we
have
lim 4 (A,).

n—co

.U'(U ZO=1An):

A fuzzy measure p is said to be upper semi-continuous if
for every decreasing sequence { A , } of measurable sets and
1 (A1) < co, we have

p(N74,) = Im p(4,).

n—>co

If p is both lower and upper semi-continuous, it is said to
be continuous(see [4,5,6,7]).

Recall that a function f: X —[0,0] is said to be meas-
urable if {z] f(z) >a} € 2 forall a € (—o0,00),

Definition 2.1 ([4,5,6,7]) (1) The Choquet integral of meas-
urable function / on A with respect to a fuzzy measure f4 is
defined by

oyl fdu= [ walf(z)> rin A)dr,
@/ J il f()
where the integral on the right-hand side is an ordinary one.

(2) A measurable function f is called integrable if the
Choquet of f can be defined and its value is finite.
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Instead of (C)/ fdu, we will write (0)/ fdp.
X

Throughout this paper, R will denote the interval [0, c0).
We say f: X—>R*

is in L) (1) if and only if fis meas-
urable and (C)/ fdu < «.

Theorem 2.2 ([4,5,6,7]). Let f, ¢ be measurable functions.
() IFF< g, then (€) [ fdu < (C)/ g dp.

@ If AC Band A,B € 2, then
c du < (C d
( )/Af we )/Bf "

@) If(fvg)lz)= maz{f(x),g(z)} and
(fAg) (@) = min{f(z),g(x)} for all z € X, then

() Gve)du=(C)] fau v(C)f gdu

\

and

IA

@) Uno)du=(C)f rau n(C)[ gdp.

Definition 2.3 ([4,5,6,7]) Let f, g be measurable non-neg-
ative functions. Then we say that f is comonotonic to ¢, in
symbol f~ g if and only if

flz) <f(&') — g(z) < g(a') for all 2, 7" € X.

Let M" be the set of continuous non-negative functions
f: X>R" with compact support and let

F={fe M| (C)[fdu <o)

and for each ¢ € F,
Fo={feF |f~g]

Definition 2.4 Let m € [0,1] arbitrary. A subset F, of F
is said to be m-convex if ¢f+m (1 —t)g € Fy whenever
f g er,,telol].

It is easily to see that for each g € F, F_ is m-convex.

Definition 2.5 ([10]) Let m € [0,1] arbitrary. A mapping
¢:Fy—R"' defined on m-convex set F, is said to be
m-convex, if

(tf+m(1—t)g) < to(f) +m(1—1)¢(g)
for all f,g € Fy and t<[0,1]; and strictly m-convex if
strict holds for f+#g¢ and ¢t (0,1).

¢:F—R™ is said to be m-concave, if

¢(Hf+m(l—t)g) = to(f) +m(l—1t)o(g)

inequality

for all f,g& Fy and t< [0,1]; and strictly m-concave if
strict inequality holds for f# g and t & (0,1).

Throughout this paper, we denote
I(R*)={la,b]| a,b€ R and a < b}.

Then an element in [ (R*) is called an interval number.
On the interval number set, we define;
[a,b],[c,d] EI(R+) and k€ R” s

[a,b] +[c,d] = [a+ ¢, b+d],

la,b] - [e,d] =]a-cb-d],

kla,b] = |ka, kb] ,

la,b] <[ec,d] if and only if ¢ < ¢ and b < d,
max { [a,0], [c,d]} <[aVe bVd],

min{ e, b], [¢,d]} < |anc, bAd].

Then (I(R%),dy)
Hausdorff metric defined by

for each pair

is a metric space, where of the

dH(A; B) :ma‘r{suprAinfyeﬂ I*y| ’
supye Binfze A| I— Z/l }

for all A,B I(R"). By the definition of the Hausdorff
metric, we have immediately the following proposition.

Proposition 2.6 ([7])
I(R"),
dul(a, b), ¢, d]) =maz{| a—c|, | b—d]| }.

For each pair [ab], [¢cd] &

Let C(R') be the class of closed subsets of R™.
Throughout this paper, we consider a closed set-valued func-
tion F: X— C(R")\{@ ] and an interval number-valued
function F: X— I[(R*)\{@ }.

We denote that dy— Im A,= A

n—>co

im dy(4,,A) =0,

n—00

where A € I(R") and {A,} C I(R").

if and only if

Definition 2.7 ([4,5,6,7]) A closed set-valued function F
is said to be measurable if for each open set O C R™,
F'YOY={z|F(z)N0O» o)< .

Definition 2.8 ([4,5,6,7]) Let F' be a closed set-valued
function. A measurable function f: X—>R™ satisfying

f(z) € F(z), Yz & X is called a measurable selection of
F,

We note that "z & X p—ae” stand for "¢ € X p—
almost everywhere”. The property P(2) holds for v € X
it—a.e. means that there is a measurable set A such that
#(A)=0 and the property P(z) holds for all z € A°

where A° is the complement of A.
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Definition 2.9 ([4,5,6,7]) (1) Let F be a closed set-valued
function and A € {2, The set-valued Choquet integral of F
on A is defined by

(0)[ Fdu={(C)[ fiuife s(F),

A A

where S(F) is the family of p—a.e. measurable selections

of F', that is,

S(F)=(f € L} (u)| f(x) € F(z), € X, p—a.e).
(2) A closed set-valued function F' is said to be Choquet

integrable if (C) / Fdp exists and dose not include co.

(3) A set-valued function F is said to be Choquet
integrably bounded if there is a function § € M * such that
“F(IL’) H = Supre F(x)l'rl = g(m), VCEE X

Instead of (C)/ Fdu, we write (C)/ Fdpu.
X

Obviously, (C) / Fdu may be empty.

Theorem 2.10 ([4,5]). (1) If a closed set-valued function F
is a Choquet integrable, then A C B and A,B € 2 —

(C)/A Fd/v‘C (C)/ Fody-

(2) If a closed set-valued function F is a Choquet in-
tegrable, then for all « &« R, (C)/ oF dp = a(C)/F dy.
Theorem 2.11 ([4]). A closed set-valued function F' is

measurable if and only if there exists a sequence of meas-
urable selections {f, } of F' such that

F(z)=cl{f,(z)) forall z € X,

Theorem 2.12 ([4,5,6,7]). If F is a closed set-valued func-
tion and Choquet integrably bounded and if we define
ff(z)=sup(r| re F(z)} and

fw(ﬁ) =inf{r] r e F(I)} for all z € X, then f+
and f~ are Choquet integrable selections of F'.

Theorem 2.13 ([4,5,6,7]). Let it be continuous fuzzy meas-
ure and F' a measurable and Choquet integrably bounded
set-valued function. If F is interval number-valued, ie.,

F(z) =[f"(2),f"(z)], =€ X, then

@) Fap =((C)[ fdu, ()] frdu].

3. Main results

Let M be the set of continuous non-negative functions
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f: X—>R" with compact support. We denote the following
classes;

T={F | F: X—>I(R") is measurable and Choquet in-
tegrable bounded} and for each G € T,

To={(Fe1| F~ G, S(F)c M"}.

Definition 3.1 ([456,7]) Let F, G € T. We say that F
and G are comonotonic, in symbol F ~ G if and only if

M fHe)<f @) - g7 ()< g"(¢) for all
z, 2 € X and ,
@ fE)<fE@) — gf(m)_ﬁ g () for all

r,r € X, ,
where F(z) =[f"(z),f"(2)] and
G(z) =g (z),9" ()] for all 7,2’ € X.

Definition 3.2 Let m € [0,1] arbitrary. A subset T, of
T is said to be Mm-convex if tF+m(l —¢)G € T, when-
ever F,G €T,, t<[0,1],

It is easily to see that for each G € T, T, is m-convex.

Definition 3.3 (1) Let m € [0,1] arbitrary. A mapping
I':1y—I(R") defined on m-convex set Ty is said to be
m-convex, if

FtF+m(1—0)G) < tI'(F)+m(1—¢)I'(G) for all
F,Ge& T, and t€[0,1]; and strictly m-convex if strict in-
equality holds for F = G and t € (0,1). If m= 1, then we
say that I is convex.

(2) I': 1y—I(R") is said to be m-concave, if

FtF+m(1—t)G) = tI'(F)+m (11— ) (G) for all
F Ge&Ty and t€[0,1]; and strictly m-concave if strict
inequality holds for F = G and t€ (0,1). If m=1, then
we say that I' is concave.

Definition 3.4 (1) Let m € [0,1] arbitrary. A mapping
I':Ty—I(R") defined on m-convex set T, is said to be
quasi-m-convex with respect to max(V ), if I'(tF+m (1 —
)Gy < V{I['(F), T'(G)} all F,GeT,
te[0,1].

(2) I': Ty—I(R™) is said to be quasi-m-concave with re-
spect to min(A), if tF+m(1—¢)G)=> A{T
(F),(G)} for all F,G& T; and t€ [0,1].

for and

Definition 3.5 Let ¢ : F;—>R ™ be a real-valued functional.
) any feF,, o) s defined by

() =(C)[ fdnu.

For

(2) Let a mapping T,;: Tg—I(R") be an interval-valued
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fuzzy mapping induced by ¢; that is, for any F € Ty, T} is

/F du .

We remark that if /' is an interval-valued Choquet in-
tegrably bounded and ftis continuous fuzzy measure, then we

have
/ Fdu

=) [ £ du, (C) [ dp]
=l ()0 (M),

where f'(z)=sup{r| re F(z)) and f(z) = inf{r
rl r e F(z).

defined by T,

Theorem 3.6 Let m < [0,1] and F, be m-convex. Then
a mapping ¢ : Fo—R ™ satisfies the following property: for
all f,g € Fy, and t € [0,1],

dH+mA—t)g) =t (f)+mQ —1t)o(g)

Proof. Let m € [0,1]. Then clearly, we have

¢ (tf+m (1—t)g)

C)/S tf+m(l—1t)gdu

= (C) ff dn+ (€) fm(1—¢)gdp

/ gdp

/fdwrm (1—1)

=1 (f) +m(1—t)¢(g).

We note that Theorem 3.6 implies @ is m-convex on F,

but if F, is m-convex of F, then ¢ is not M-convex.

Theorem 3.7 Let m < [0,1], Fy and T, be m-convex
on F and T, respectively. If a mapping ¢ : F; >R ™ is m
-convex, then T@r : To*éf (R +) is M-convex.

Proof. Let F, G € T, and

=[ff], G=lg7,9"].
By Theorem 2.12, we have
fiaer)gW; g+ = ]FO~

Then, there exist A, h* € F, such that
=t +m{l—t)g”
and
=t m(l—t)g"
for all me [0,1], < [0,1]. So, H=[h",h"] & T. Since

¢ is Mm-convex, then we have

T,(tF+m(l—t)G)
=T,(tlf f l+m(1-Dg"97])
_Tw([hiﬂh+}):To(H)
o) hdu, ([ hTdp)
=[¢(h7),0(h")]
=[of +m1—1t)g ), o (tf +m(1—1t)g")
[t () +m(1—t)o(g™),
o (fF)+m(1—1t)¢(g")]
= [to(f), ({f )]+
m(l—t)o (g ),
=tlo(f), o(f"

o) f 5 du. (
0)/ 9~ du, (C)/ gtdu)

:t(C)/qu+m(1—t)(C)/ G du

IA

m(l—t)¢(97)]
N+ mA—t)[o(g7),¢(g7)]

0)/ fldp] +m(1—1t)

— 1T, (F) +m (1 - 1) T, (G).
By similar method, we obtain the following theorems.

Theorem 3.8 Let m € [0,1], Fy and T, be m-concave
on F and T, respectively. If a mapping ¢: Fy—R™* is m

-concave, then T(b : T0—>] (R +) is ™M-concave.
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