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Abstract. In this note we establish a new non-convex hybrid iteration al-

gorithm corresponding to Khan iterative process [4] and prove strong con-
vergence theorems of common fixed points for a uniformly closed asymp-
totically family of countable quasi-Lipschitz mappings in Hilbert spaces.
Moreover, the main results are applied to get the common fixed points of

finite family of quasi-asymptotically nonexpansive mappings. The results
presented in this article are interesting extensions of some current results.
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1. Introduction

Fixed points of special mappings like nonexpansive, asymptotically nonex-
pansive, contractive and other mappings has become a field of interest on its
on and has a various applications in related fields like image recovery, signal
processing and geometry of objects [13]. Almost in all branches of mathematics
we see some versions of theorems relating to fixed points of functions of special
nature. As a result we apply them in industry, toy making, finance, aircrafts
and manufacturing of new model cars. A fixed-point iteration scheme has been
applied in intensity modulated radiation therapy optimization to pre-compute

Received August 3, 2016. Revised February 22, 2017. Accepted March 8, 2017. ∗Corresponding

author.
†This work was supported by the Higher Education Commission, Pakistan and University of

Education, Township, Lahore 54000, Pakistan.

c⃝ 2017 Korean SIGCAM and KSCAM.

313



314 Waqas Nazeer, Mobeen Munir, Abdul Rauf Nizami, Samina Kausar, Shin Min Kang

dose-deposition coefficient matrix, see [12]. Because of its vast range of ap-
plications almost in all directions, the research in it is moving rapidly and an
immense literature is present now. Constructive fixed point theorems (for ex-
ample, Banach fixed point theorem) which not only claims the existence of a
fixed point but yields an algorithm, too (in the Banach case fixed point itera-
tion xn+1 = f(xn)). Any equation that can be written as x = f(x) for some
mapping f that is contracting with respect to some (complete) metric on X will
provide such a fixed point iteration. Mann’s iteration method was the stepping
stone in this regard and is invariably used in most of the occasions, see [5]. But
it only ensures weak convergence, see [2] but more often then not, we require
strong convergence in many real world problems relating to Hilbert spaces, see
[1]. So mathematician are in search for the modifications of the Mann’s process
to control and guarantee the strong convergence, see [2, 6, 7, 8, 9, 10, 11] and
references therein.

Most probably the first noticeable modification of Mann’s Iteration process
was proposed by Nakajo and Takahashi in [10] in 2003. They introduced this
modification for only one nonexpansive mapping in a Hilbert space where Kim
and Xu [6] introduced a modification for asymptotically nonexpansive mappings
in the Hilbert space in 2006. In the same year Martinez-Yanes and Xu [8] intro-
duced a variation of the Ishikawa iteration process for a nonexpansive mappings
for a Hilbert space. They also gave modification of the Halpern iteration method
in Hilbert space. Su and Qin [11] gave a monotone hybrid iteration process for
nonexpansive mappings in a Hilbert space. Liu et al. [7] gave a novel iteration
method for finite family of quasi-asymptotically pseudo-contractive mappings in
a Hilbert space.

Let H be a Hilbert space and C be its nonempty, closed and convex subset
of H. Let PC(·) be the metric projection from H onto C.

A mapping T : C → C is said to be nonexpensive if

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C. Denote by F (T ) the set of fixed points of T . It is well known
that F (T ) is closed and convex.

A mapping T : C → C is said to be quasi-Lipschitz if F (T ) ̸= ∅ and

∥Tx− p∥ ≤ L∥x− p∥

for all x ∈ C and p ∈ F (T ), where 1 ≤ L < ∞ is a constant.
If L = 1, then T is said to be quasi-nonexpansive.
It is well-known that T is said to be closed if xn → x and ∥Txn − xn∥ → 0 as

n → ∞ implies Tx = x. T is said to be weak closed if xn ⇀ x and ∥Txn−xn∥ → 0
as n → ∞ implies Tx = x. It is trivial fact that a weak closed mapping must be
a closed one but converse is no longer true.

Let {Tn} be a sequence of mappings from C into itself with a nonempty
common fixed points set F . Then {Tn} is called uniformly closed if for all
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convergent sequences {zn} ⊂ C with conditions ∥Tnzn− zn∥ → 0 as n → ∞, the
limit of {zn} belongs to F .

In 1953, we have Mann iterative scheme [5]:

xn+1 = (1− an)xnn+ anT (xn), n = 0, 1, 2, . . . .

In [3], Guan et al. established the following non-convex hybrid iteration
algorithm corresponding to Mann iterative scheme:

x0 ∈ C = Q0, choosen arbitrarily,

yn = (1− an)xn + anTnxn, n ≥ 0,

Cn = {z ∈ C : ∥yn − z∥ ≤ (1 + (Ln − 1)an)∥xn − z∥ ∩A, n ≥ 0,

Qn = {z ∈ Qn−1 : ⟨xn − z, x0 − xn⟩ ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qnx0,

and proved some strong convergence results relating to common fixed points for
a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in
H. They applied their results for the finite case to obtain fixed points.

In 2013, Khan iterative scheme [4] was defined as the following process:{
xn+1 = T (yn),

yn = (1− αn)xn + αnT (xn), n = 0, 1, 2, . . . .

In this article, we established a kind of non-convex hybrid iteration algorithms
corresponding to Khan iterative scheme and prove relevant strong convergence
theorems of common fixed points for uniformly closed asymptotically family of
countable quasi-Lipschitz mappings in Hilbert spaces. An application of pre-
sented algorithm is also given.

2. Main results

In this section we give our main results.

Definition 2.1. Let C be a closed convex subset of a Hilbert space H, and let
{Tn} be a family of countable quasi-Ln-Lipschitz mappings from C into itself.
{Tn} is said to be asymptotically if limn→∞ Ln = 1.

The following lemmas are well known and useful for our conclusions

Proposition 2.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Given x ∈ H and z ∈ C, z = PCx if and only if we have ⟨x−z, z−y⟩ ≥ 0
for all y ∈ C.

Proposition 2.3. Let C be a closed convex subset of a Hilbert space H and let
{Tn} be a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz
mappings from C into itself. Then the common fixed point set F is closed and
convex.
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Proposition 2.4. Let C be a closed convex subset of a Hilbert space H. For
any given x0 ∈ H, we have p = PCx0 if and only if ⟨p − z, x0 − p⟩ ≥ 0 for all
z ∈ C.

Theorem 2.5. Let C be a closed convex subset of a Hilbert space H, and let
{Tn} : C → C be a uniformly closed asymptotically family of countable quasi-
Ln-Lipschitz mappings from C into itself. Assume that αn ∈ (a, 1] holds for
some a ∈ (0, 1). Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,

yn = Tn[(1− αn)xn + αnTnxn], n ≥ 0,

Cn = {z ∈ C : ∥yn − z∥ ≤ [(1 + (Ln − 1)αn)]Ln∥xn − z∥} ∩A, n ≥ 0,

Qn = {z ∈ Qn−1 : ⟨xn − z, x0 − xn⟩ ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qnx0,

converges strongly to PFx0, where coCn denotes the closed convex closure of Cn

for all n ≥ 1 and A = {z ∈ H : ∥z − PFx0∥ ≤ 1}.

Proof. we split the proof into seven steps.
Step 1. It is obvious that coCn and Qn are closed and convex for all n ≥ 0.

Next, we show that F ∩A ⊂ coCn for all n ≥ 0. Indeed, for each p ∈ F ∩A, we
have

∥yn − p∥ = ∥Tn[(1− αn)xn + αnTnxn]− p∥
= ∥(1− αn)(Tnxn − p) + αn(T

2
nxn − p)∥

≤ (1− αn)Ln∥xn − p∥+ αnL
2
n∥xn − p∥

= [(1 + (Ln − 1)αn)]Ln∥xn − p∥
and p ∈ A, so p ∈ Cn which implies that F ∩ A ⊂ Cn for all n ≥ 0. therefore,
F ∩A ⊂ coCn for all n ≥ 0.

Step 2. We show that F ∩ A ⊂ coCn ∩Qn for all n ≥ 0. it suffices to show
that F ∩ A ⊂ Qn for all n ≥ 0. We prove this by mathematical induction. For
n = 0 we have F ∩ A ⊂ C = Q0. Assume that F ∩ A ⊂ Qn. Since xn+1 is the
projection of x0 onto coCn ∩Qn, from Proposition 2.2, we have

⟨xn+1 − z, xn+1 − x0⟩ ≤ 0, ∀z ∈ coCn ∩Qn

as F ∩A ⊂ coCn ∩Qn, the last inequality holds, in particular, for all z ∈ F ∩A.
This together with the definition of Qn+1 implies that F ∩ A ⊂ Qn+1. Hence
the F ∩A ⊂ coCn ∩Qn holds for all n ≥ 0.

Step 3. We prove {xn} is bounded. Since F is a nonepmty closed convex
subset of C, there exists a unique element z0 ∈ F such that z0 = PFx0. From
xn+1 = PcoCn∩Qnx0, we have

∥xn+1 − x0∥ ≤ ∥z − x0∥
for every z ∈ coCn ∩Qn. As z0 ∈ F ∩A ⊂ coCn ∩Qn, we get

∥xn+1 − x0∥ ≤ ∥z0 − x0∥
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for each n ≥ 0. This implies that {xn} is bounded.
Step 4. We show that {xn} converges strongly to a point of C (we show that

{xn} is a Cauchy sequence). As xn+1 = PcoCn∩Qnx0 ⊂ Qn and xn = PQnx0

(Proposition 2.4), we have

∥xn+1 − x0∥ ≥ ∥xn − x0∥

for every n ≥ 0, which together with the boundedness of ∥xn − x0∥ implies that
there exsists the limit of ∥xn − x0∥. On the other hand, from xn+m ∈ Qn, we
have ⟨xn − xn+m, xn − x0⟩ ≤ 0 and hence

∥xn+m − xn∥2 = ∥(xn+m − x0)− (xn − x0)∥2

≤ ∥xn+m − x0∥2 − ∥xn − x0∥2 − 2⟨xn+m − xn, xn − x0⟩
≤ ∥xn+m − x0∥2 − ∥xn − x0∥2 → 0, n → ∞

for any m ≥ 1. Therefore {xn} is a Cauchy sequence in C, then there exists a
point q ∈ C such that limn→∞ xn = q.

Step 5. We show that yn → q, as n → ∞. Let

Dn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + L2
n(Ln − 1)(Ln + 1)}.

From the definition of Dn, we have

Dn = {z ∈ C : ⟨yn − z, yn − z⟩ ≤ ⟨xn − z, xn − z⟩+ L2
n(Ln − 1)(Ln + 1)}

= {z ∈ C : ∥yn∥2 − 2⟨yn, z⟩+ ∥z∥2 ≤ ∥xn∥2 − 2⟨xn, z⟩+ ∥z∥2

+ L2
n(Ln − 1)(Ln + 1)}

= {z ∈ C : 2⟨xn − yn, z⟩ ≤ ∥xn∥2 − ∥yn∥2 + L2
n(Ln − 1)(Ln + 1)}.

This implies that Dn is closed and convex, for all n ≥ 0. Next, we show that
Cn ⊂ Dn, n ≥ 0.

In fact, for any z ∈ Cn, we have

∥yn − z∥2 ≤ [1 + (Ln − 1)αn]
2L2

n∥xn − z∥2

= ∥xn − z∥2L2
n + [2(Ln − 1)αn + (Ln − 1)2α2

n]L
2
n∥xn − z∥2

≤ ∥xn − z∥2L2
n + [2(Ln − 1) + (Ln − 1)2]L2

n∥xn − z∥2

= ∥xn − z∥2L2
n + (Ln − 1) + (Ln + 1)L2

n∥xn − z∥2.

From

Cn = {z ∈ C : ∥yn − z∥ ≤ [1 + (Ln − 1)αn]Ln∥xn − z∥} ∩A, n ≥ 0,

we have Cn ⊂ A, n ≥ 0. Since A is convex, we also have coCn ⊂ A, n ≥ 0.
Consider xn ∈ coCn−1, we know that

∥yn − z∥ ≤ ∥xn − z∥2 + L2
n(Ln − 1)(Ln + 1)∥xn − z∥2

≤ ∥xn − z∥2 + L2
n(ln − 1)(Ln + 1).
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This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ 0. Sinnce Dn is convex, we
have co(Cn) ⊂ Dn, n ≥ 0. Therefore

∥yn − xn+1∥2 ≤ ∥xn − xn+1∥2 + L2
n(Ln − 1)(Ln − 1) → 0

as n → ∞. That is, yn → q as n → ∞.
Step 6. We show that q ∈ F . From the definition of yn, we have

(1 + αnTn)∥Tnxn − xn∥ = ∥yn − xn∥ → 0

as n → ∞. Since αn ∈ (a, 1] ⊂ [0, 1], from the above limit we have

lim
n→∞

∥Tnxn − xn∥ = 0.

Since {Tn} is uniformly closed and xn → q, we have q ∈ F .
Step 7. We claim that q = z0 = PFx0, if not, we have that ∥x0 − p∥ > ∥x0 −

z0∥. There must exists a positive integer N, if n > N then ∥x0−xn∥ > ∥x0−z0∥,
which leads to

∥z0 − xn∥2 = ∥z0 − xn + xn − x0∥2

= ∥z0 − xn∥2 + ∥xn − x0∥2 + 2⟨z0 − xn, xn − x0⟩.
It follows that ⟨z0−xn, xn−x0⟩ < 0 which implies that z0∈Qn, so that z0∈F,

this is a contradiction. This completes the proof. �
In [3], we show an example of Cn which does not involve a convex subset.

Corollary 2.6. Let C be a closed convex subset of a Hilbert space H, and let
T : C → C be a closed quasi-nonexpansive mapping from C into itself. Assume
that αn ∈ (a, 1] holds for some a ∈ (0, 1). Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,

yn = T [(1− αn)xn + αnTxn], n ≥ 0,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥} ∩A, n ≥ 0,

Qn = {z ∈ Qn−1 : ⟨xn − z, x0 − xn⟩ ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qnx0,

converges strongly to PF (T )x0, where A = {z ∈ H : ∥z − PFx0∥ ≤ 1}.
Proof. Take Tn ≡ T and Ln ≡ 1 in Theorem 2.5, in this case, Cn is closed and
convex, for all n ≥ 0, by using Theorem 2.5, we obtain Corollary 2.6. �
Corollary 2.7. Let C be a closed convex subset of a Hilbert space H, and
let T : C → C be a nonexpansive mapping from C into itself. Assume that
αn ∈ (a, 1] holds for some a ∈ (0, 1). Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,

yn = T [(1− αn)xn + αnTxn], n ≥ 0,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥} ∩A, n ≥ 0,

Qn = {z ∈ Qn−1 : ⟨xn − z, x0 − xn⟩ ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qnx0,
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converges strongly to PF (T )x0, where A = {z ∈ H : ∥z − PFx0∥ ≤ 1}.

3. Application to family of quasi-asymptotically nonexpansive
mappings

In this section, we will apply the above result to study the following finit
family of asymptotically quasi-nonexpansive mappings {Tn}N−1

n=0 . Let

∥T j
i x− p∥ ≤ ki,j∥x− p∥, ∀x ∈ C, p ∈ F,

where F denotes the common fixed point set of {Tn}N−1
n=0 , limj→∞ ki,j = 1 for all

0 ≤ i ≤ N−1. The finite family of asymptotically quasi-nonexpansive mappings
{Tn}N−1

n=0 is said to be uniformly L-Lipschitz if

∥T j
i x− T j

i y∥ ≤ Li,j∥x− y∥, ∀x, y ∈ C

for all i = 0, 1, 2, ..., N − 1 and j ≥ 1, where L ≥ 1.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H, and let
{Tn}N−1

n=0 : C → C be a uniformly L-Lipschitz finit family of asymptotically quasi-
nonexpansive mappings with nonempty common fixed point set F . Assume that
αn ∈ (a, 1] holds for some a ∈ (0, 1). Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,

yn = T
j(n)
i(n) [(1− αn)xn + αnT

j(n)
i(n) xn], n ≥ 0,

Cn = {z ∈ C : ∥yn − z∥ ≤ [1 + (ki(n),j(n) − 1)αn]

×ki(n),j(n)∥xn − z∥} ∩A, n ≥ 0,

Qn = {z ∈ Qn−1 : ⟨xn − z, x0 − xn⟩ ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qnx0,

converges strongly to PFx0, where coCn denotes the closed convex closure of Cn

for all n ≥ 1, n = (j(n)−1)N+i(n) for all n ≥ 0 andA = {z ∈ H : ∥z−PFx0∥ ≤
1}.

Proof. It is sufficient to prove the following two conclusions.
Conclusion 1. {TN−1

n=0 }∞n=0 is a uniformly closed asymptotically family of
countable quasi-Ln-Lipschitz mappings from C into itself.

Conclusion 2. F =
∩N

n=0 F (Tn) =
∩∞

n=0 F (T
j(n)
i(n) ), where F (Tn) denotes

the fixed point set of the mappings Tn. �

Corollary 3.2. Let C be a closed convex subset of a Hilbert space H, and let
T : C → C be a L-Lipschitz asymptotically quasi-nonexpansive mappings with
nonempty common fixed point set F . Assume that αn ∈ (a, 1] holds for some
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a ∈ (0, 1). Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,

yn = Tn[(1− αn)xn + αnT
nxn], n ≥ 0,

Cn = {z ∈ C : ∥yn − z∥ ≤ [1 + (kn − 1)αn]kn∥xn − z∥} ∩A, n ≥ 0,

Qn = {z ∈ Qn−1 : ⟨xn − z, x0 − xn⟩ ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qnx0,

converges strongly to PFx0, where coCn denotes the closed convex closure of Cn

for all n ≥ 1 and A = {z ∈ H : ∥z − PFx0∥ ≤ 1}.

Proof. Take Tn ≡ T in Theorem 3.1, we obtain Corollary 3.2. �
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