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CLASS-MAPPING PROPERTIES
OF THE HOHLOV OPERATOR

AKSHAYA K. MISHRA AND TRAILOKYA PANIGRAHI

ABSTRACT. In the present paper sufficient conditions, in terms of hyper-
geometric inequalities, are found so that the Hohlov operator preserves
a certain subclass of close-to-convex functions (denoted by R7 (A, B))
and transforms the classes consisting of k-uniformly convex functions,
k-starlike functions and univalent starlike functions into R7 (A, B).

1. Introduction and definitions
Let Ag be the class of analytic functions in the open unit disc
U={zeC:|z| <1}

and having the normalized power series expansion
o0

(1.1) fR) =24 anz" (z€U).
n=2

The class S consists of univalent functions in Agy. The function f € Ajq is said
to be in k — UCV, the class of k-uniformly convex functions (0 < k < o0), if
f € § along with the property that for every circular arc v contained in i,
with center ¢ where |¢| < k, the image curve f(7v) is a convex arc (cf. [10]).
It is well known that (see [10]) f € k —UCV if and only if the image of the
function p, where

21(2)

is a subset of the conic region
— — 2 2 2 2,2
(1.2) Qp={w=u+iv:u" >k*(u—1)"+k*v°, 0<Ek <oo}.
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The class k — ST, consisting of k-starlike functions, is defined via k — UCV
by the usual Alexander’s relation, i.e.,

fek—8T < geck—-UCVY, where g(z) = /Z <fit)> dt (see e.g. [11]).
0

In particular, if £ =0 and k = 1, we get
0-UCY=CV, 0-8T=8T,1-UCY=UCY and 1 — ST = SP,

where CV, ST, UCV, and SP are respectively the familiar classes of univalent
convex functions, univalent starlike functions [4], uniformly convex functions
([7], also see [12], [15]) and parabolic starlike functions [15]. For a unified and
systematic study of these classes with the aid of fractional calculus, see e.g.
17, 18, 19, 20, 21].

The function f € Ay is said to be in the class R™(4, B) (see [3]) if

f'(z) -1
(A= B)T = B(f'(z) = 1)

For particular values of A, B and 7 the class R7 (A, B) includes certain in-
teresting subclasses of S. For example, by taking

(1.3) <l(zeU,7eC\{0},-1<B<A<I).

T =e "cosn (—g <n< g),

we get the class R, (), studied by Ponnusamy and Ronning [14], where
Ry(8) = {f € Ao : RE(f(2) = B) > 0.z €U —7 << 5.0 F<1}.

Similarly, if we set 7 =1, A=p3, B=—08 (0 < 8 < 1) we obtain the class of
functions f € Ag satisfying the inequality

A=1-2(0<p<1)and B=—

‘f +J<Bz€UO<B<U

studied earlier by Padmanabhan [13], Caplinger and Causey [2] and others.
Note that the functions in the class R™ (A, B) are univalent and close to-convex.

The generalized hypergeometric function ,Fy (p,q € Ny := {0,1,2,...}) with
p numerator parameters a; € C G=1,..., p) and ¢ denominator parameters
Br € C\Zy (Zy :={0,-1,-2,...}, k=1,...,q); is defined by (cf. [16])

— (1)p - (ap)n z"
F, Fylaq,...,ap; By 2) = E AN ALRINN Sy ZALRal
' ‘1(2) 3 q( v 7 p7517 7 qu) n=0 (Bl)n(ﬂq)n n!’

where (A),, is the Pochhammer symbol (or shifted factorial), defined in terms
of the gamma function by

(A +n) _{ 1 (n=0)
T =1 0

(M) = T\ ~(A+n—-1) (neN:={1,2,...}).
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Note that ,F,(z) is an entire function if p < ¢+ 1. However, if p = ¢ + 1, then
pFy(2) is analytic in U. Also, if

q p
p=¢q+1and %(Zﬁj—z%) > 0,

j=1 j=1

then ,Fy(z) converges on OU. In particular, the function

) S (@)
(14) 2F1( 7b7 ) ) ;(C)n(l)n

is the familiar Gaussian hypergeometric function. Furthermore, the evaluation
oFy(a,b;¢; 1) is related to the gamma function by

I'(e)l'(c—a—D) .
T(c—al(c—0) (%(C—a—b) > 0, C¢ZO).

We now recall the Hohlov operator Z¢ : Ag — Ay, defined in terms of the
Hadamard product (or convolution) by (cf. [8])

(1.6) (ZP())(2) = 2 2Fa(a, bye; 2) * f(2) (f € Ao,z €U).
Thus from (1.1) and (1.4) we have

(15) 2F1(a,b; C;l) =

(1.7) (T () () =2+ Wanz” (z eU).

It is well known that the class S and many of its important subclasses are not
closed under the ring operations of usual addition and multiplication of func-
tions. Therefore, the study of class-preserving and class-transforming operators
is an interesting problem in geometric function theory. The Hohlov operator
unifies several such previously well studied operators, namely the Alexander,
Libera, Bernardi and Carlson-Shaffer operators (denoted here by A, £, B and
L(a, c) respectively). Thus

A =T (f), LF) =T3°(f), B(f) = T35 (f), L(a,o)(f) = T&1(f).

Kanas and Srivastava [9] and Ponnusamy and Ronning [14] (also see Gangadha-
ran et al. [5]) obtained coefficient inequalities so that the operator I preserves
the class £ —UCV and transforms the classes

R,(B) into k —UCVY; R,(B) into k — ST;
ST into k —UCVY; ST into k — ST and k —UCV into k — ST.
The main object of the present paper is to consider the more general class
R™ (A, B) (instead of R,)(/)) and find sufficient conditions in terms of hyperge-
ometric inequalities for the reverse of some of the transformations considered in

[9] and [14]. More specifically sufficient conditions are obtained here to ensure
that the Hohlov operator Z* maps the classes

k—UCY into R™(A,B), k— ST into R (A, B) and ST into R" (A4, B).
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Furthermore, the invariance of the class R7(A, B) under the operator 7"
is discussed. Lastly, a sufficient condition is obtained so that the function
29F1(a,b;c; z) belongs to RT(A, B). Sufficient conditions for the particular
cases of Z? are also emphasized in the form of corollaries to the main theorems.

2. Some preliminary lemmas
We need each of the following results in our investigation.
Lemma 1 (see [10], [11]). Let
(2.1) Pu(2) =1+ pi(k)z +pa(k)z* +--- (z €U, pi(k) > 0)

be the Riemann map of U onto Q. where the region Qy is defined as in (1.2)
and let the function f be given by (1.1). If f € k —UCV, then

k)
2.2) anf < POt ey 1),
Further if f € k — ST, then

(p(ln(’“_))l")!l (n e N\ {1}).

The estimates (2.2) and (2.3) are sharp.

Lemma 2 (see [3]). Let the function f, given by (1.1), be a member of R™(A, B).
Then

(2.3) 4| <

(2.4 a < (4= BT ey 1),

The estimate in (2.4) is sharp for the function

1 o Fin—1
f(2) :/0 (H%)dt (z €U,neN\{1}).

Lemma 3 (see [3]). Let the function f € Ay be of the form (1.1). If

(25) Y _(1+|Blnlan] < (A=B)|r| (-1<B<A<1, 7€C\{0}),
n=2
then f € R™(A, B). The result is sharp for the function
_ (A - B)T n

Lemma 4 (see [1]). Let the function f of the form (1.1) be a member of S
(or 8ST). Then the sharp estimate

(2.6) lanl <7 (n €N\ {1})
holds true.
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Lemma 5 (see [6]). Let the function f € Ay be of the form (1.1). If

oo

(2.7) > nlan| <1,

n=2
then f € ST.
3. Mapping properties of the Hohlov operator

Throughout in the present section we shall take

~1<B<A<1, %ﬁ<n<g.

Theorem 1. Let a,b € C\ {0} and ¢ € C satisfy
(3.1) Re > max{0, 2Ra + 2, 2Rb + 2}.
If the hypergeometric inequality

T(Re){T(Re — 2 Ra — 2)T(Re — 2 Rb — 2)} 2
IT(Re — a)||[T(Re — b)] [I(ab\l(b)zl

+ 3|ab|{(Re — 2 Ra — 2)(Re — 2Rb — 2)} 2
+ {(Re — 2Ra — 2)o(Re — 2R — 2)2}%}
(A - B)I7|
— (1+1B))
is satisfied, then I&* maps the class S (or ST) into RT(A, B).
Proof. Let the function f given by (1.1) be a member of S or ST. By (1.7)

+1

)
To0(f erZ ((b anz" (z €U).

In view of Lemma 3, it is thus Sufﬁment to show that

S+ B|)n‘man < (A— B)|r|.

By making use of Lemma 4 and the elementary inequality

n=2

(3.3) [(c)pl > (Re)p (peN)
it is again sufficient to prove that
A — B)|7|
3.4 2] Il _ .
4 Z Ry < AT
The term S; above is equlvalently written as
N [(@)n (0)n]
S, = Z(n+1) Z{n +3n+1}(gce D,

n=1 n=1
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_ - |( )n )n b | - |(a)n(b)n
= Z(@ch ;3 Z R)n (D +Z Re)n (1)
|

n

|
& (@l i (@i llBnss] | S [(@nllBal
= L RV, +3Z B 2 Ry "

The repeated applications of the relation
() =d(d+1)pm—1 (d€C, meN)

yield

(b+2
35 & ‘Z| §Rc+|2| (T))

3|ab| [(a+1) ||b+1 [(a
Z (Re+ 1), Z

Applying Cauchy’s inequality to individual sums in (3.5) we get

[(@)2][(B)2] [f o= (@4 2)n(@+2)n 2 f o~ (04 2)n(b+2)0 13
S1< (Re)2 HT;) (£c2—|—2)nzr1)2n } {712—;) (;02—1—2) (? } ]
* 3§|T?cb‘ [{ ; ((z;cl—i)-nl(ia)ljn }2{; (Zzé;:cl—?— 1()b —(i_li) }5}
HEmsm ) (S @) ]
_ l@)[](®)s| [{QFl(cH—2,&+2;5fﬁc+2;1)}%{2F1(b+2,5—1—2;?)?0—1—2;1)}%]

(Re)2
3|\

—{2F(a+1a+ LR+ L)} { oFi(b+1,b+1;Re+1;1)}2

+{ 2F1(a7d;%c; 1)}%{ o1 (b, b; Re; 1)}% 1

Since the condition (3.1) holds we use the Gauss summation formula (1.5) and
get

S1

IN

|(a)2]|(b)2 {F(?RC +2)T(Re — 2 Ra — 2) }é{r(&ec +2)T (e —2 Rb—2) }%
(Re)2 I'(Rec — a)'(Re — a) L'(Re — b)I'(Re — b)
3lab| (T(Re+ DI'(Re —2 Ra — 1)z (T(Re+ DI(Re —2 Rb— 1) %
Re { I'(Rc — a)T'(Re — a) } { ['(Re — b)['(Re — b) }
T(Re)L(Re —2 Ra) 2 (T(Re)T(Re — 2 RNb) Y 2
{I‘(S?c —a)(Re—a) } {rmc ~ )T (Re —b) .
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Moreover, the gamma function is symmetric about real axis, i.e., T'(z) = ['(2).
Therefore,

[(Re){T(Re — 2Ra — 2)T(Re — 2Rb — 2)}2
T(Re — a)|T(Re — b)] [QAIOH
+ 3[ab|{(Re — 2Ra — 2)(Re — 2Rb — 2)} 2

+{(Re — 2Ra — 2)5(Re — 2R — 2)2}%} ~1.

51 <

Thus in view of (3.4) if the hypergeometric inequality (3.2) is satisfied, then
TZab(f) € R7(A, B) as asserted. The proof of Theorem 1 is complete. ]

Corollary 1. Let a € C\ {0} and c € C satisfy
Re > max{0, 2Ra + 2}.
If the hypergeometric inequality
L'(Re)T'(Re — 2Ra — 2)
ID(Re —a)|?
(A—DB)l7|
- 1+ B|
is satisfied, then T»% maps the class S or ST into R (A, B).
Proof. Take b = a in Theorem 1. O

|(a)2]? + 3|a|*(Rc — 2Ra — 2) + (Re — 2Ra — 2)2}

+1

Corollary 2. Let a € C\ {0} and c € C satisfy
Re > max{4, 2Ra + 2}.
If the hypergeometric inequality
L(Re){T'(Re — 2Ra — 2)T'(Re — 4)} =

T(Re — a)T(Re— 1) [2/(@|
+3lal{(Re — 2Ra — 2)(Re — 4)}# + {(Re — 2Ra — 2)2(Re — 4),)*
(A - B)|r|
— +1
=Tl "
is satisfied, then L(a,c) maps the class of S (or ST) into R™ (A, B).
Proof. Take b =1 in Theorem 1. O

Theorem 2. Let a,b € C\ {0}, p1 = pi(k) be defined by (2.1) and ¢ € C
satisfy

(3.6) Re > max{0, 2Ra + p1, 2R + p1 }.
(i) If the hypergeometric inequality

lab|py
Re

(3.7) {sFy(a+1,a+1,p + LRe+1,2; D)} {3 b+ 1,b+1,p; + 1;
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Fe + 1,2; 1)}% + {3F2(a7d7p1; §RC7 1; 1)}%{3}7‘2(()’ val; %Ca L; 1)}%
(A - B)l7|
- 1+|B|
is satisfied, then I&* maps the class k — ST into R (A, B).
(ii) Furthermore, if

+1

‘ab|]91

(3.8) (Fa+1,a+1,p 4+ 1LRe+ 1,2, 1) 2 5B (b+ 1,b+1,py + 1;

§Rc+ 1,2;1)}2 + {3Fa(a,a,p1; Re, 1;1)}2 {3 Fa(b, b, p1; Re, 1;1)}2 < 2
is satisfied, then Z&* maps the class k — ST into ST.
Proof. (i) Let the function f given by (1.1) be a member of k — ST . As in the

proof of Theoreml, it is sufficient to show that

S+ Bl (0| < (4= Bl
n—> n—1 n—1

Using the coefficient estimate (2.3) it is again sufficient to show that

& @ea®Bu(p)as (A Bl
(3.9 2= 2 " e (U (U = A5 1B])

n=2

n=1 n=1 ( 1
_ latlp $= e+ D0+ >\<p1+1> (@ullE)alpr)e
Z R (R +Z Re)uUaDn

An application of Cauchy’s inequality gives

jablpr 1§~ (@4 D@+ Da(pr+Dn 3 5= 0+ Db+ Da(pr+1)n ) #
= Re HZ (Re+ 1) (2)n(L)n } {Z (Re + 1)n(2)n(1)n } }

= n=0
(a) Pl (D)) (pr)n \ 3
" — L
{ Z (§Rc } {nz::o (%C)n(l)n(l)n}
Since the condltlon (36) is satisfied, the above summations can be written as
evaluations of generalized hypergeometric functions and we get
|ablp:
Re
+ {3F(a,a, p1; Re, 1; 1)}%{3F2(b, b, p1; Re, 1; 1)}% -1
Therefore, in view of (3.9), if the condition (3.7) is satisfied, then Z3*(f) €
R7(A, B).

(ii) We follow the lines of proof of (i). In this case we use Lemma 5 (instead
of Lemma 3). The proof of Theorem 2 is complete. O

So < [{sFola+1,a+1,p1+ LRe+ 1,5 D R+ 1,5+ L + 1iRe + 1,21}



CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR 59

Corollary 3. Let a € C\ {0},p1 = p1(k) be defined by (2.1) and ¢ € C satisfy
Re > max{0,2Ra + p; }.
If the hypergeometric inequality

2
|a8|%f1 {sFa(a+1,a+1,p1 + 1;Re +1,2;1)} + {3F>(a, a,p1; Re, 1;1) }

(A—B)|7|
- 1+ |B|
is satisfied, then T»% maps the class k — ST into R7(A, B). Further, if
la*p1
Re
is satisfied, then %% maps the class k — ST into ST.

+1

{ 3F2(CL+ ].,C_L+ 1,171 + ]-,éRC+ 17271)}+{ 3F2(a7a’7p1;§)%031;1)} S 2

Proof. Taking b = a in Theorem 2 we get the result. O
Corollary 4. Let a € C\ {0}, p1 = p1(k) be defined by (2.1) and ¢ € C satisfy
Re > max{2 + p1,2Ra + p1 }.

If the hypergeometric inequality
(3.10)

Re—1)2 1
(%i Cp )1)1 [{(%c 1|:p1 2)%8}; {sFa(a+1, a+1,p1 +1;Rc+1,2;1)}2
— 1— 2 —Pp1 — 2

+ {3F2(a,a,p1; Re, 1; 1)}%

(A—B)||
— +1
= 1aBl T
is satisfied, then L(a,c) maps the class k — ST into R™(A, B). Further, if
(3.11)
(Re — 1)% la|p1

. (3P (a+1, a+1,p1+LRe+1,21)):
Re—pr— 13 L{(Re—pr — 2)meys 20 b )}

+ {sFy(a,a,pi; Re, 1)} 2| < 2
is satisfied, then L(a,c) maps the class k — ST into ST .

Proof. We take b = 1 in Theorem 2. The Gauss summation formula (1.5)
provides the following simplification

3F2(2, 2,p1 +1; Re + 1,2; 1)

2F1(2,p1 + 1; Re + 1;1)
_ T(Re+1)I'(Re —p1 —2)
T'(Re — DI'(Re — p1)
_ (Re)(Re — 1)
(Re —p1 = 1)(Re —p1 — 2)
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and
3F2(1,1,p1;Re, 1;1) = 2F1(1,p1; Re; 1)
F(Re)T(Re—p1 —1)  (Re—1)
F(Re—1DT'(Re—p1) (Re—p1—1)°
Thus, the conditions (3.7) and (3.8) of Theorem 2 simplify to (3.10) and (3.11)

respectively. Therefore, the assertions of Corollary 4 follows from Theorem 2.
O

Theorem 3. Let a,b € C\ {0}, p1 = p1(k) be defined by (2.1) and ¢ € C
satisfy

(3.12) Re > max{0,2Ra + p; — 1,200+ p; — 1}.
(i) If the hypergeometric inequality

3 . i (A-B
(313) |: 3F2(a,¢‘z,p1;§)?c,1;1)} [ 3F2(b, b,pl;ﬂ?c,l;l)} < (1+|BZ||T|

is satisfied, then T&* maps the class k —UCY into the class RT (A, B).
(ii) Furthermore, if

+1

1 1
(314) [ 3F2(a’ a»?l? %07 17 1)i| ’ |: 3F2(b7 Bmpl; %07 17 1)i| ’ S 2
is satisfied, then I»* maps the class of k —UCV into the class ST.

Proof. (i) Let the function f given by (1.1) be a member of k—UCV. We follow
the lines of proof of Theoreml. Taking into account the estimates (2.2) for a,,
and the elementary inequality (3.3), we show that

& (@a i (D)na|(p)n1 _ (A= Bl
S3=2n R a1~ 151B|

The term S3 can be equivalently written as

Z'mc Z'mcH ORIOLE .

n=0

(3.15)
n=2

An application of Cauchy’s mequahty and the relation
(d)n = (d)n (n € No)

for any complex number d give
= (@)n(@)n(p1)n \ 2 = (0)n(0)n(p1)n \ 2
3.16 Sy < 18)n\@)n P1)n O)n(O)n(Prn Y2
(3.16) <A o) L2 B )
The conditions fec > 2Ra+ p; — 1 and Re > 2Rb+ p; — 1 given in (3.12) ensure

that the sums in the r.h.s of (3.16) are convergent hypergeometric series; so
that

S3 S {3F2(a,d,p1;§RC, 1) 1)}%{3F2(b,1_77p1;§}%0, 17 1)}% -1
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Therefore, in view of (3.15) if the inequality (3.13) is satisfied, then Z*(f) €
R7(A, B) as asserted.

(ii) We follow the lines of proof of (i). In this case we use Lemma 5 (instead
of Lemma 3).The proof of Theorem 3 is complete. O

Corollary 5. Let the complex numbers a,b and c be as in Theorem 3 and
further satisfy the inequality

{3Fs(a,a,p; Re, 1; 1)}%{3F2(b, b,p1; Re, 1; 1)}% <(1—-p)cosn+ 1.
Then the operator I* maps k —UCY into R,(B).
Proof. Taking A=1-28 (0<8<1),B=—1and 7 =e " cosn in Theorem
3(i) we get the result. O
Corollary 6. Let a € C\ {0}, p1 = p1(k) be defined by (2.1) and ¢ € C satisfy
Re > max{0, 2Ra + p; — 1}.
If the hypergeometric inequality
(4-B)lr]
1+ |B|
is satisfied, then T&® maps the class k —UCY into R™(A, B). Further, if
sFay(a,a,p1;Re, 1;1) < 2
is satisfied, then T»% maps the class k —UCV into ST.

3l (a,a,pi;RNe, 1;1) < +1

Proof. Taking b = a in Theorem 3 we get the result. (]

Corollary 7. Let a € C\ {0},p1 = p1(k) be defined by (2.1) and ¢ € C satisfy
e > max{2Ra +p1 — 1,p1 + 1}.

If the hypergeometric inequality

_ (A — B)|7| 2/ Re—pp — 1
1 F: ; L)< [([——+1 _—
(3 7) 3 2(a?a7p1,§Rc7 ) )— < 1+‘B| + > ( %C*]_ )
is satisfied, then L(a,c) maps k —UCY into R™(A, B). Further, if
_ Re—pp —1
: Re, ;1) <4 — L~
(3 18) 3F2(a7a7p17%071a1) —4( §RC*1 )

is satisfied, then L(a,c) maps k —UCV into ST .
Proof. We take b =1 in Theorem 3. Note that
3F3(1,1,p1;Re, 1;1) = oF1(1,p1; Re; 1)
IR Re—p1—1)  (Re—1)
FRe—1IRe—p1) (Re—p1—1)°
Thus, the conditions (3.13) and (3.14) of Theorem 3 simplify to (3.17) and

(3.18) respectively. The assertion of Corollary 7 now follows from Theorem 3.
(]
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Theorem 4. Let a,b € C\ {0} and ¢ € C satisfy

(3.19) Re > max{0, 2Ra, 2Rb}.

If the hypergeometric inequality

L(Re){T'(Re — 2Ra)T(Re — 2Rb) } 2 1
[T(Re — a)||T(Re — )| ~ 1+ |B|

is satisfied, then I&* maps the class of R™(A, B) into R™(A, B).

Proof. Let the function f given by (1.1) be a member of R™(A, B). By virtue
of Lemma 3 and the coefficient inequality (2.4) it is sufficient to show that
(3.21) (1+|B])Ss <1,

where

(3.20) +1

- |( )n 1 n 1| |
Sy = —1.
=2 R (D Z
Applications of Cauchy s inequality and the Gauss summation formula (1.5)
give

= { oF (a, a; %C;l)}%{ 2 Fy (b, b; Re; 1)}% 1
T(Re){T'(Re — 2Ra)T' (Re — 2§Rb)}§ 3
IT(Re — a)||T (Re — b))

Thus, in view of (3.21), if the hypergeometric inequality (3.20) is satisfied,
then Z¢°(f) € R™(A, B) as asserted. The proof of Theorem 4 is complete. [J

Corollary 8. Let a € C\ {0} and c € C satisfy
Re > max{0, 2Ra}.
If the hypergeometric inequality
F(ﬁlcﬂ)(ra‘%(? - a)|22§Ra) =1 +1|B| 1
is satisfied, then T%% maps the class of R™ (A, B) into itself.

Proof. Taking b = a in Theorem 4 we get the result. O

Corollary 9. Let a € C\ {0} and ¢ € C satisfy
Re > max{2,2Ra}.
If the hypergeometric inequality
L(Re){[(Re — 2Ra)T (Re — 2)} 2 < 1 +1
IT(Re — a)|T(Re — 1) ~ 1+|B|
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is satisfied, then L(a,c) maps R™ (A, B) into itself.
Proof. Take b =1 in Theorem 4.

Theorem 5. Let a,b € C\ {0} and c € C satisfy
(3.22) Re > max{0, 2Ra + 1,2Rb + 1}.

If the hypergeometric inequality

T(Re){T(Re — 2Ra — 1)I(Re — 2Rb — 1)} 2 “ab'
[T (Re — a)[[T(Re — )]

+ {(Re — 2Ra — 1)(Re — 2Rb — 1)}%}

(A— B)|7|
3.23 <14+ ——F—
( ) - 1+ |B|
is satisfied, then z oF(a,b;c;z) € R™(A, B).

Proof. We know

oo

1(b)
zzFlabcz:Z Ju( ""“—z+za 1n1".
(©)n

Therefore, by Lemma 3, it is sufficient to show that

o @na || _ (A= B)l7|
o20 s=y el < o

As in our demonstration of Theorem 3 we can write S equivalently as

_ |aHb\ |(a ||b+1 |(a H
o 72 §Rc+1 Z (Re)n
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Applications of Cauchy’s inequality followed by the Gauss summation formula

(1.5) and the relation I'( z ) = I'(z) give

lab| T = (a4 1)p(@+1)p 15 (= (b+ 1), (b+ 1), %
Sf’ggrec[{; Re+ Dn(Dn } {nz_% Re+ Dn(D)n b
( ) ( )n 2 ( )n(b)n 2
+{Z< R 3 {Z< (D } o
_ abl
T Re
+ { 2F1(CL,EL; %C; 1)}5{ QFl(b,B; §RC; 1)}5 -1

L(Re){L(Re — 2Ra — 1)I(Re — 2Rb — 1)} =
B IT(Re — a)||T(Re — b)|

X [|ab| +{(Re— 2Ra — 1) (Re — 2Rb — 1)}%] -~

{{ oFi(a+1,a+LRe+ L1 E{ oF (b + 1,b+ 1;Re + 1; 1)}%}
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Thus, in view of (3.24), if the inequality (3.23) is satisfied, then z o F (a, b; ¢; 2) €

R7(A, B). The proof of Theorem 5 is complete. d
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