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CLASS-MAPPING PROPERTIES

OF THE HOHLOV OPERATOR

Akshaya K. Mishra and Trailokya Panigrahi

Abstract. In the present paper sufficient conditions, in terms of hyper-
geometric inequalities, are found so that the Hohlov operator preserves
a certain subclass of close-to-convex functions (denoted by Rτ (A,B))

and transforms the classes consisting of k-uniformly convex functions,
k-starlike functions and univalent starlike functions into Rτ (A,B).

1. Introduction and definitions

Let A0 be the class of analytic functions in the open unit disc

U := {z ∈ C : |z| < 1}

and having the normalized power series expansion

(1.1) f(z) = z +
∞∑

n=2

anz
n (z ∈ U).

The class S consists of univalent functions in A0. The function f ∈ A0 is said
to be in k − UCV, the class of k-uniformly convex functions (0 ≤ k < ∞), if
f ∈ S along with the property that for every circular arc γ contained in U ,
with center ζ where |ζ| ≤ k, the image curve f(γ) is a convex arc (cf. [10]).
It is well known that (see [10]) f ∈ k − UCV if and only if the image of the
function p, where

p(z) = 1 +
zf ′′(z)

f ′(z)
(z ∈ U),

is a subset of the conic region

(1.2) Ωk := {w = u+ iv : u2 > k2(u− 1)2 + k2v2, 0 ≤ k < ∞}.
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The class k − ST , consisting of k-starlike functions, is defined via k − UCV
by the usual Alexander’s relation, i.e.,

f ∈ k − ST ⇐⇒ g ∈ k − UCV, where g(z) =

∫ z

0

(
f(t)

t

)
dt (see e.g. [11]).

In particular, if k = 0 and k = 1, we get

0− UCV ≡ CV, 0− ST ≡ ST , 1− UCV ≡ UCV and 1− ST ≡ SP,

where CV, ST , UCV, and SP are respectively the familiar classes of univalent
convex functions, univalent starlike functions [4], uniformly convex functions
([7], also see [12], [15]) and parabolic starlike functions [15]. For a unified and
systematic study of these classes with the aid of fractional calculus, see e.g.
[17, 18, 19, 20, 21].

The function f ∈ A0 is said to be in the class Rτ (A,B) (see [3]) if

(1.3)

∣∣∣∣ f ′(z)− 1

(A−B)τ −B(f ′(z)− 1)

∣∣∣∣ < 1 (z ∈ U , τ ∈ C \ {0},−1 ≤ B < A ≤ 1).

For particular values of A,B and τ the class Rτ (A,B) includes certain in-
teresting subclasses of S. For example, by taking

τ = e−iη cos η (−π

2
< η <

π

2
), A = 1− 2β (0 ≤ β < 1) and B = −1

we get the class Rη(β), studied by Ponnusamy and Ronning [14], where

Rη(β) =
{
f ∈ A0 : ℜ(eiη(f ′(z)− β)) > 0, z ∈ U ,−π

2
< η <

π

2
, 0 ≤ β < 1

}
.

Similarly, if we set τ = 1, A = β, B = −β (0 < β ≤ 1) we obtain the class of
functions f ∈ A0 satisfying the inequality∣∣∣f ′(z)− 1

f ′(z) + 1

∣∣∣ < β (z ∈ U , 0 < β ≤ 1)

studied earlier by Padmanabhan [13], Caplinger and Causey [2] and others.
Note that the functions in the classRτ (A,B) are univalent and close-to-convex.

The generalized hypergeometric function pFq (p, q ∈ N0 := {0, 1, 2, . . .}) with
p numerator parameters αj ∈ C (j = 1, . . . , p) and q denominator parameters
βk ∈ C \ Z−

0 (Z−
0 := {0,−1,−2, . . .}, k = 1, . . . , q); is defined by (cf. [16])

pFq(z) = pFq(α1, . . . , αp;β1, . . . , βq; z) :=
∞∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
,

where (λ)n is the Pochhammer symbol (or shifted factorial), defined in terms
of the gamma function by

(λ)n :=
Γ(λ+ n)

Γ(λ)
=

{
1 (n = 0)
λ · · · (λ+ n− 1) (n ∈ N := {1, 2, . . .}).
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Note that pFq(z) is an entire function if p < q + 1. However, if p = q + 1, then

pFq(z) is analytic in U . Also, if

p = q + 1 and ℜ
( q∑

j=1

βj −
p∑

j=1

αj

)
> 0,

then pFq(z) converges on ∂U . In particular, the function

(1.4) 2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n
(c)n(1)n

zn

is the familiar Gaussian hypergeometric function. Furthermore, the evaluation

2F1(a, b; c; 1) is related to the gamma function by

(1.5) 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

(
ℜ(c− a− b) > 0, c /∈ Z−

0

)
.

We now recall the Hohlov operator Ia,b
c : A0 → A0, defined in terms of the

Hadamard product (or convolution) by (cf. [8])

(1.6) (Ia,b
c (f))(z) = z 2F1(a, b; c; z) ∗ f(z) (f ∈ A0, z ∈ U).

Thus from (1.1) and (1.4) we have

(1.7) (Ia,b
c (f))(z) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
anz

n (z ∈ U).

It is well known that the class S and many of its important subclasses are not
closed under the ring operations of usual addition and multiplication of func-
tions. Therefore, the study of class-preserving and class-transforming operators
is an interesting problem in geometric function theory. The Hohlov operator
unifies several such previously well studied operators, namely the Alexander,
Libera, Bernardi and Carlson-Shaffer operators (denoted here by A, L, B and
L(a, c) respectively). Thus

A(f) = I1,1
2 (f), L(f) = I1,2

3 (f), B(f) = I1,γ+1
γ+2 (f), L(a, c)(f) = Ia,1

c (f).

Kanas and Srivastava [9] and Ponnusamy and Ronning [14] (also see Gangadha-
ran et al. [5]) obtained coefficient inequalities so that the operator Ia,bc preserves
the class k − UCV and transforms the classes

Rη(β) into k − UCV; Rη(β) into k − ST ;

ST into k − UCV; ST into k − ST and k − UCV into k − ST .

The main object of the present paper is to consider the more general class
Rτ (A,B) (instead of Rη(β)) and find sufficient conditions in terms of hyperge-
ometric inequalities for the reverse of some of the transformations considered in
[9] and [14]. More specifically sufficient conditions are obtained here to ensure
that the Hohlov operator Ia,b

c maps the classes

k − UCV into Rτ (A,B), k − ST into Rτ (A,B) and ST into Rτ (A,B).



54 AKSHAYA K. MISHRA AND TRAILOKYA PANIGRAHI

Furthermore, the invariance of the class Rτ (A,B) under the operator Ia,b
c

is discussed. Lastly, a sufficient condition is obtained so that the function
z2F 1(a, b; c; z) belongs to Rτ (A,B). Sufficient conditions for the particular
cases of Ia,b

c are also emphasized in the form of corollaries to the main theorems.

2. Some preliminary lemmas

We need each of the following results in our investigation.

Lemma 1 (see [10], [11]). Let

(2.1) Pk(z) = 1 + p1(k)z + p2(k)z
2 + · · · (z ∈ U , p1(k) > 0)

be the Riemann map of U onto Ωk where the region Ωk is defined as in (1.2)
and let the function f be given by (1.1). If f ∈ k − UCV, then

(2.2) |an| ≤
(p1(k))n−1

n!
(n ∈ N \ {1}).

Further if f ∈ k − ST , then

(2.3) |an| ≤
(p1(k))n−1

(n− 1)!
(n ∈ N \ {1}).

The estimates (2.2) and (2.3) are sharp.

Lemma 2 (see [3]). Let the function f, given by (1.1), be a member of Rτ(A,B).
Then

(2.4) |an| ≤ (A−B)
|τ |
n

(n ∈ N \ {1}).

The estimate in (2.4) is sharp for the function

f(z) =

∫ 1

0

(
1 +

(A−B)τtn−1

1 +Btn−1

)
dt (z ∈ U , n ∈ N \ {1}).

Lemma 3 (see [3]). Let the function f ∈ A0 be of the form (1.1). If

(2.5)
∞∑

n=2

(1 + |B|)n|an| ≤ (A−B)|τ | (−1 ≤ B < A ≤ 1, τ ∈ C \ {0}),

then f ∈ Rτ (A,B). The result is sharp for the function

f(z) = z +
(A−B)τ

(1 + |B|)n
zn (z ∈ U , n ∈ N \ {1}).

Lemma 4 (see [1]). Let the function f of the form (1.1) be a member of S
(or ST ). Then the sharp estimate

(2.6) |an| ≤ n (n ∈ N \ {1})

holds true.
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Lemma 5 (see [6]). Let the function f ∈ A0 be of the form (1.1). If

(2.7)
∞∑

n=2

n|an| ≤ 1,

then f ∈ ST .

3. Mapping properties of the Hohlov operator

Throughout in the present section we shall take

−1 ≤ B < A ≤ 1,
−π

2
< η <

π

2
.

Theorem 1. Let a, b ∈ C \ {0} and c ∈ C satisfy

(3.1) ℜc > max{0, 2ℜa+ 2, 2ℜb+ 2}.
If the hypergeometric inequality

(3.2)

Γ(ℜc){Γ(ℜc− 2 ℜa− 2)Γ(ℜc− 2 ℜb− 2)} 1
2

|Γ(ℜc− a)||Γ(ℜc− b)|

[
|(a)2||(b)2|

+ 3|ab|{(ℜc− 2 ℜa− 2)(ℜc− 2ℜb− 2)} 1
2

+ {(ℜc− 2ℜa− 2)2(ℜc− 2ℜb− 2)2}
1
2

]
≤ (A−B)|τ |

(1 + |B|)
+ 1

is satisfied, then Ia,b
c maps the class S (or ST ) into Rτ (A,B).

Proof. Let the function f given by (1.1) be a member of S or ST . By (1.7)

Ia,b
c (f) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
anz

n (z ∈ U).

In view of Lemma 3, it is thus sufficient to show that
∞∑

n=2

(1 + |B|)n
∣∣∣ (a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣ ≤ (A−B)|τ |.

By making use of Lemma 4 and the elementary inequality

(3.3) |(c)p| > (ℜc)p (p ∈ N)

it is again sufficient to prove that

(3.4) S1 =
∞∑

n=2

n2 |(a)n−1(b)n−1|
(ℜc)n−1(1)n−1

≤ (A−B)|τ |
(1 + |B|)

.

The term S1 above is equivalently written as

S1 =
∞∑

n=1

(n+ 1)2
|(a)n(b)n|
(ℜc)n(1)n

=
∞∑

n=1

{n(n− 1) + 3n+ 1} |(a)n(b)n|
(ℜc)n(1)n
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=

∞∑
n=2

|(a)n(b)n|
(ℜc)n(1)n−2

+ 3

∞∑
n=1

|(a)n(b)n|
(ℜc)n(1)n−1

+

∞∑
n=1

|(a)n(b)n|
(ℜc)n(1)n

=
∞∑

n=0

|(a)n+2||(b)n+2|
(ℜc)n+2(1)n

+ 3
∞∑

n=0

|(a)n+1||(b)n+1|
(ℜc)n+1(1)n

+
∞∑

n=0

|(a)n||(b)n|
(ℜc)n(1)n

− 1.

The repeated applications of the relation

(d)m = d(d+ 1)m−1 (d ∈ C, m ∈ N)

yield

S1 =
|(a)2||(b)2|

(ℜc)2

∞∑
n=0

|(a+ 2)n||(b+ 2)n|
(ℜc+ 2)n(1)n

(3.5)

+
3|ab|
ℜc

∞∑
n=0

|(a+ 1)n||(b+ 1)n|
(ℜc+ 1)n(1)n

+

∞∑
n=0

|(a)n||(b)n|
(ℜc)n(1)n

− 1.

Applying Cauchy’s inequality to individual sums in (3.5) we get

S1 ≤ |(a)2||(b)2|
(ℜc)2

[{ ∞∑
n=0

(a+ 2)n(ā+ 2)n
(ℜc+ 2)n(1)n

} 1
2
{ ∞∑

n=0

(b+ 2)n(b̄+ 2)n
(ℜc+ 2)n(1)n

} 1
2
]

+
3|ab|
ℜc

[{ ∞∑
n=0

(a+ 1)n(ā+ 1)n
(ℜc+ 1)n(1)n

} 1
2
{ ∞∑

n=0

(b+ 1)n(b̄+ 1)n
(ℜc+ 1)n(1)n

} 1
2
]

+
[{ ∞∑

n=0

(a)n(ā)n
(ℜc)n(1)n

} 1
2
{ ∞∑

n=0

(b)n(b̄)n
(ℜc)n(1)n

} 1
2
]
− 1

=
|(a)2||(b)2|

(ℜc)2

[
{2F1(a+ 2, ā+ 2;ℜc+ 2; 1)} 1

2 {2F1(b+ 2, b̄+ 2;ℜc+ 2; 1)} 1
2 ]

+
3|ab|
ℜc

{ 2F1(a+ 1, ā+ 1;ℜc+ 1; 1)} 1
2 { 2F1(b+ 1, b̄+ 1;ℜc+ 1; 1)} 1

2

+ { 2F1(a, ā;ℜc; 1)}
1
2 { 2F1(b, b̄;ℜc; 1)}

1
2 − 1.

Since the condition (3.1) holds we use the Gauss summation formula (1.5) and
get

S1 ≤ |(a)2||(b)2|
(ℜc)2

{Γ(ℜc+ 2)Γ(ℜc− 2 ℜa− 2)

Γ(ℜc− a)Γ(ℜc− ā)

} 1
2
{Γ(ℜc+ 2)Γ(ℜc− 2 ℜb− 2)

Γ(ℜc− b)Γ(ℜc− b̄)

} 1
2

+
3|ab|
ℜc

{Γ(ℜc+ 1)Γ(ℜc− 2 ℜa− 1)

Γ(ℜc− a)Γ(ℜc− ā)

} 1
2
{Γ(ℜc+ 1)Γ(ℜc− 2 ℜb− 1)

Γ(ℜc− b)Γ(ℜc− b̄)

} 1
2

+
{ Γ(ℜc)Γ(ℜc− 2 ℜa)
Γ(ℜc− a)Γ(ℜc− ā)

} 1
2
{Γ(ℜc)Γ(ℜc− 2 ℜb)
Γ(ℜc− b)Γ(ℜc− b̄)

} 1
2 − 1.
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Moreover, the gamma function is symmetric about real axis, i.e., Γ(z) = Γ ¯(z).
Therefore,

S1 ≤ Γ(ℜc){Γ(ℜc− 2ℜa− 2)Γ(ℜc− 2ℜb− 2)} 1
2

|Γ(ℜc− a)||Γ(ℜc− b)|

[
|(a)2||(b)2|

+ 3|ab|{(ℜc− 2ℜa− 2)(ℜc− 2ℜb− 2)} 1
2

+ {(ℜc− 2ℜa− 2)2(ℜc− 2ℜb− 2)2}
1
2

]
− 1.

Thus in view of (3.4) if the hypergeometric inequality (3.2) is satisfied, then
Ia,b
c (f) ∈ Rτ (A,B) as asserted. The proof of Theorem 1 is complete. □

Corollary 1. Let a ∈ C \ {0} and c ∈ C satisfy

ℜc > max{0, 2ℜa+ 2}.

If the hypergeometric inequality

Γ(ℜc)Γ(ℜc− 2ℜa− 2)

|Γ(ℜc− a)|2
[
|(a)2|2 + 3|a|2(ℜc− 2ℜa− 2) + (ℜc− 2ℜa− 2)2

]
≤ (A−B)|τ |

1 + |B|
+ 1

is satisfied, then Ia,ā
c maps the class S or ST into Rτ (A,B).

Proof. Take b = ā in Theorem 1. □

Corollary 2. Let a ∈ C \ {0} and c ∈ C satisfy

ℜc > max{4, 2ℜa+ 2}.

If the hypergeometric inequality

Γ(ℜc){Γ(ℜc− 2ℜa− 2)Γ(ℜc− 4)} 1
2

|Γ(ℜc− a)|Γ(ℜc− 1)

[
2|(a)2|

+ 3|a|{(ℜc− 2ℜa− 2)(ℜc− 4)} 1
2 + {(ℜc− 2ℜa− 2)2(ℜc− 4)2}

1
2

]
≤ (A−B)|τ |

1 + |B|
+ 1

is satisfied, then L(a, c) maps the class of S (or ST ) into Rτ (A,B).

Proof. Take b = 1 in Theorem 1. □

Theorem 2. Let a, b ∈ C \ {0}, p1 = p1(k) be defined by (2.1) and c ∈ C
satisfy

(3.6) ℜc > max{0, 2ℜa+ p1, 2ℜb+ p1}.

(i) If the hypergeometric inequality

|ab|p1
ℜc

{3F2(a+ 1, ā+ 1, p1 + 1;ℜc+ 1, 2; 1)} 1
2 {3F2(b+ 1, b̄+ 1, p1 + 1;(3.7)
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ℜc+ 1, 2; 1)} 1
2 + {3F2(a, ā, p1;ℜc, 1; 1)}

1
2 {3F2(b, b̄, p1;ℜc, 1; 1)}

1
2

≤ (A−B)|τ |
1 + |B|

+ 1

is satisfied, then Ia,b
c maps the class k − ST into Rτ (A,B).

(ii) Furthermore, if

(3.8)
|ab|p1
ℜc

{3F2(a+ 1, ā+ 1, p1 + 1;ℜc+ 1, 2; 1)} 1
2 {3F2(b+ 1, b̄+ 1, p1 + 1;

ℜc+ 1, 2; 1)} 1
2 + {3F2(a, ā, p1;ℜc, 1; 1)}

1
2 {3F2(b, b̄, p1;ℜc, 1; 1)}

1
2 ≤ 2

is satisfied, then Ia,b
c maps the class k − ST into ST .

Proof. (i) Let the function f given by (1.1) be a member of k−ST . As in the
proof of Theorem1, it is sufficient to show that

∞∑
n=2

(1 + |B|)n
∣∣∣ (a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣ ≤ (A−B)|τ |.

Using the coefficient estimate (2.3) it is again sufficient to show that

(3.9) S2 =
∞∑

n=2

n
|(a)n−1(b)n−1|(p1)n−1

(ℜc)n−1(1)n−1(1)n−1
≤ (A−B)|τ |

(1 + |B|)
.

Now

S2 =
∞∑

n=1

(n+ 1)
|(a)n(b)n|(p1)n
(ℜc)n(1)n(1)n

=
∞∑

n=1

|(a)n(b)n|(p1)n
(ℜc)n(1)n−1(1)n

+
∞∑

n=1

|(a)n(b)n|(p1)n
(ℜc)n(1)n(1)n

=
|ab|p1
ℜc

∞∑
n=0

|(a+ 1)n(b+ 1)n|(p1 + 1)n
(ℜc+ 1)n(1)n(2)n

+

∞∑
n=0

|(a)n||(b)n|(p1)n
(ℜc)n(1)n(1)n

− 1.

An application of Cauchy’s inequality gives

S2 ≤ |ab|p1
ℜc

[{ ∞∑
n=0

(a+ 1)n(ā+ 1)n(p1 + 1)n
(ℜc+ 1)n(2)n(1)n

} 1
2
{ ∞∑

n=0

(b+ 1)n(b̄+ 1)n(p1 + 1)n
(ℜc+ 1)n(2)n(1)n

} 1
2
]

+
{ ∞∑

n=0

(a)n(ā)n(p1)n
(ℜc)n(1)n(1)n

} 1
2
{ ∞∑

n=0

(b)n(b̄)n(p1)n
(ℜc)n(1)n(1)n

} 1
2 − 1.

Since the condition (3.6) is satisfied, the above summations can be written as
evaluations of generalized hypergeometric functions and we get

S2 ≤ |ab|p1
ℜc

[
{3F2(a+ 1, ā+ 1, p1 + 1;ℜc+ 1, 2; 1)} 1

2 {3F2(b+ 1, b̄+ 1, p1 + 1;ℜc+ 1, 2; 1)} 1
2

]
+ {3F2(a, ā, p1;ℜc, 1; 1)}

1
2 {3F2(b, b̄, p1;ℜc, 1; 1)}

1
2 − 1.

Therefore, in view of (3.9), if the condition (3.7) is satisfied, then Ia,b
c (f) ∈

Rτ (A,B).
(ii) We follow the lines of proof of (i). In this case we use Lemma 5 (instead

of Lemma 3). The proof of Theorem 2 is complete. □
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Corollary 3. Let a ∈ C \ {0}, p1 = p1(k) be defined by (2.1) and c ∈ C satisfy

ℜc > max{0, 2ℜa+ p1}.
If the hypergeometric inequality

|a|2p1
ℜc

{3F2(a+ 1, ā+ 1, p1 + 1;ℜc+ 1, 2; 1)}+ {3F2(a, ā, p1;ℜc, 1; 1)}

≤ (A−B)|τ |
1 + |B|

+ 1

is satisfied, then Ia,ā
c maps the class k − ST into Rτ (A,B). Further, if

|a|2p1
ℜc

{ 3F2(a+ 1, ā+ 1, p1 + 1;ℜc+ 1, 2; 1)}+ { 3F2(a, ā, p1;ℜc, 1; 1)} ≤ 2

is satisfied, then Ia,ā
c maps the class k − ST into ST .

Proof. Taking b = ā in Theorem 2 we get the result. □

Corollary 4. Let a ∈ C \ {0}, p1 = p1(k) be defined by (2.1) and c ∈ C satisfy

ℜc > max{2 + p1, 2ℜa+ p1}.
If the hypergeometric inequality

(ℜc− 1)
1
2

(ℜc− p1 − 1)
1
2

[ |a|p1
{(ℜc− p1 − 2)ℜc} 1

2

{3F2(a+ 1, ā+ 1, p1 + 1;ℜc+ 1, 2; 1)} 1
2

(3.10)

+ {3F2(a, ā, p1;ℜc, 1; 1)}
1
2

]
≤ (A−B)|τ |

1 + |B|
+ 1

is satisfied, then L(a, c) maps the class k − ST into Rτ (A,B). Further, if

(3.11)

(ℜc− 1)
1
2

(ℜc− p1 − 1)
1
2

[ |a|p1
{(ℜc− p1 − 2)ℜc} 1

2

{3F2(a+1, ā+1, p1 +1;ℜc+1, 2; 1)} 1
2

+ {3F2(a, ā, p1;ℜc, 1; 1)}
1
2

]
≤ 2

is satisfied, then L(a, c) maps the class k − ST into ST .

Proof. We take b = 1 in Theorem 2. The Gauss summation formula (1.5)
provides the following simplification

3F2(2, 2, p1 + 1;ℜc+ 1, 2; 1) = 2F1(2, p1 + 1;ℜc+ 1; 1)

=
Γ(ℜc+ 1)Γ(ℜc− p1 − 2)

Γ(ℜc− 1)Γ(ℜc− p1)

=
(ℜc)(ℜc− 1)

(ℜc− p1 − 1)(ℜc− p1 − 2)
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and

3F2(1, 1, p1;ℜc, 1; 1) = 2F1(1, p1;ℜc; 1)

=
Γ(ℜc)Γ(ℜc− p1 − 1)

Γ(ℜc− 1)Γ(ℜc− p1)
=

(ℜc− 1)

(ℜc− p1 − 1)
.

Thus, the conditions (3.7) and (3.8) of Theorem 2 simplify to (3.10) and (3.11)
respectively. Therefore, the assertions of Corollary 4 follows from Theorem 2.

□

Theorem 3. Let a, b ∈ C \ {0}, p1 = p1(k) be defined by (2.1) and c ∈ C
satisfy

(3.12) ℜc > max{0, 2ℜa+ p1 − 1, 2ℜb+ p1 − 1}.
(i) If the hypergeometric inequality

(3.13)
[

3F2(a, ā, p1;ℜc, 1; 1)
] 1

2
[

3F2(b, b̄, p1;ℜc, 1; 1)
] 1

2 ≤ (A−B)|τ |
1 + |B|

+ 1

is satisfied, then Ia,b
c maps the class k − UCV into the class Rτ (A,B).

(ii) Furthermore, if

(3.14)
[

3F2(a, ā, p1;ℜc, 1; 1)
] 1

2
[

3F2(b, b̄, p1;ℜc, 1; 1)
] 1

2 ≤ 2

is satisfied, then Ia,b
c maps the class of k − UCV into the class ST .

Proof. (i) Let the function f given by (1.1) be a member of k−UCV. We follow
the lines of proof of Theorem1. Taking into account the estimates (2.2) for an
and the elementary inequality (3.3), we show that

(3.15) S3 =
∞∑

n=2

n
|(a)n−1(b)n−1|(p1)n−1

(ℜc)n−1(1)n−1(1)n
≤ (A−B)|τ |

1 + |B|
.

The term S3 can be equivalently written as

S3 =
∞∑

n=1

|(a)n(b)n|(p1)n
(ℜc)n(1)n(1)n

=
∞∑

n=0

|(a)n||(b)n|(p1)n
(ℜc)n(1)n(1)n

− 1.

An application of Cauchy’s inequality and the relation

(d)n = ( d )n (n ∈ N0)

for any complex number d give

(3.16) S3 ≤
{ ∞∑

n=0

(a)n(ā)n(p1)n
(ℜc)n(1)n(1)n

} 1
2
{ ∞∑

n=0

(b)n(b̄)n(p1)n
(ℜc)n(1)n(1)n

} 1
2 − 1.

The conditions ℜc > 2ℜa+p1−1 and ℜc > 2ℜb+p1−1 given in (3.12) ensure
that the sums in the r.h.s of (3.16) are convergent hypergeometric series; so
that

S3 ≤ {3F2(a, ā, p1;ℜc, 1; 1)}
1
2 {3F2(b, b̄, p1;ℜc, 1; 1)}

1
2 − 1.
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Therefore, in view of (3.15) if the inequality (3.13) is satisfied, then Ia,b
c (f) ∈

Rτ (A,B) as asserted.
(ii) We follow the lines of proof of (i). In this case we use Lemma 5 (instead

of Lemma 3).The proof of Theorem 3 is complete. □
Corollary 5. Let the complex numbers a, b and c be as in Theorem 3 and
further satisfy the inequality

{3F2(a, ā, p1;ℜc, 1; 1)}
1
2 {3F2(b, b̄, p1;ℜc, 1; 1)}

1
2 ≤ (1− β) cos η + 1.

Then the operator Ia,b
c maps k − UCV into Rη(β).

Proof. Taking A = 1− 2β (0 ≤ β < 1), B = −1 and τ = e−iη cos η in Theorem
3(i) we get the result. □
Corollary 6. Let a ∈ C \ {0}, p1 = p1(k) be defined by (2.1) and c ∈ C satisfy

ℜc > max{0, 2ℜa+ p1 − 1}.
If the hypergeometric inequality

3F2(a, ā, p1;ℜc, 1; 1) ≤
(A−B)|τ |
1 + |B|

+ 1

is satisfied, then Ia,ā
c maps the class k − UCV into Rτ (A, B). Further, if

3F2(a, ā, p1;ℜc, 1; 1) ≤ 2

is satisfied, then Ia,ā
c maps the class k − UCV into ST .

Proof. Taking b = ā in Theorem 3 we get the result. □
Corollary 7. Let a ∈ C \ {0}, p1 = p1(k) be defined by (2.1) and c ∈ C satisfy

ℜc > max{2ℜa+ p1 − 1, p1 + 1}.
If the hypergeometric inequality

(3.17) 3F2(a, ā, p1;ℜc, 1; 1) ≤
( (A−B)|τ |

1 + |B|
+ 1

)2(ℜc− p1 − 1

ℜc− 1

)
is satisfied, then L(a, c) maps k − UCV into Rτ (A,B). Further, if

(3.18) 3F2(a, ā, p1;ℜc, 1; 1) ≤ 4
(ℜc− p1 − 1

ℜc− 1

)
is satisfied, then L(a, c) maps k − UCV into ST .

Proof. We take b = 1 in Theorem 3. Note that

3F2(1, 1, p1;ℜc, 1; 1) = 2F1(1, p1;ℜc; 1)

=
Γ(ℜc)Γ(ℜc− p1 − 1)

Γ(ℜc− 1)Γ(ℜc− p1)
=

(ℜc− 1)

(ℜc− p1 − 1)
.

Thus, the conditions (3.13) and (3.14) of Theorem 3 simplify to (3.17) and
(3.18) respectively. The assertion of Corollary 7 now follows from Theorem 3.

□
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Theorem 4. Let a, b ∈ C \ {0} and c ∈ C satisfy

(3.19) ℜc > max{0, 2ℜa, 2ℜb}.
If the hypergeometric inequality

(3.20)
Γ(ℜc){Γ(ℜc− 2ℜa)Γ(ℜc− 2ℜb)} 1

2

|Γ(ℜc− a)∥Γ(ℜc− b)|
≤ 1

1 + |B|
+ 1

is satisfied, then Ia,b
c maps the class of Rτ (A,B) into Rτ (A,B).

Proof. Let the function f given by (1.1) be a member of Rτ (A,B). By virtue
of Lemma 3 and the coefficient inequality (2.4) it is sufficient to show that

(3.21) (1 + |B|)S4 ≤ 1,

where

S4 =

∞∑
n=2

|(a)n−1(b)n−1|
(ℜc)n−1(1)n−1

=

∞∑
n=0

|(a)n||(b)n|
(ℜc)n(1)n

− 1.

Applications of Cauchy’s inequality and the Gauss summation formula (1.5)
give

S4 ≤
{ ∞∑

n=0

(a)n(ā)n
(ℜc)n(1)n

} 1
2
{ ∞∑

n=0

(b)n(b̄)n
(ℜc)n(1)n

} 1
2 − 1

=
{

2F1(a, ā;ℜc; 1)
} 1

2
{

2F1(b, b̄;ℜc; 1)
} 1

2 − 1

=
Γ(ℜc){Γ(ℜc− 2ℜa)Γ(ℜc− 2ℜb)} 1

2

|Γ(ℜc− a)||Γ(ℜc− b)|
− 1.

Thus, in view of (3.21), if the hypergeometric inequality (3.20) is satisfied,
then Ia,b

c (f) ∈ Rτ (A,B) as asserted. The proof of Theorem 4 is complete. □

Corollary 8. Let a ∈ C \ {0} and c ∈ C satisfy

ℜc > max{0, 2ℜa}.
If the hypergeometric inequality

Γ(ℜc)Γ(ℜc− 2ℜa)
|Γ(ℜc− a)|2

≤ 1

1 + |B|
+ 1

is satisfied, then Ia,ā
c maps the class of Rτ (A,B) into itself.

Proof. Taking b = ā in Theorem 4 we get the result. □

Corollary 9. Let a ∈ C \ {0} and c ∈ C satisfy

ℜc > max{2, 2ℜa}.
If the hypergeometric inequality

Γ(ℜc){Γ(ℜc− 2ℜa)Γ(ℜc− 2)} 1
2

|Γ(ℜc− a)|Γ(ℜc− 1)
≤ 1

1 + |B|
+ 1
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is satisfied, then L(a, c) maps Rτ (A,B) into itself.

Proof. Take b = 1 in Theorem 4. □

Theorem 5. Let a, b ∈ C \ {0} and c ∈ C satisfy

(3.22) ℜc > max{0, 2ℜa+ 1, 2ℜb+ 1}.

If the hypergeometric inequality

Γ(ℜc){Γ(ℜc− 2ℜa− 1)Γ(ℜc− 2ℜb− 1)} 1
2

|Γ(ℜc− a)||Γ(ℜc− b)|

[
|ab|

+ {(ℜc− 2ℜa− 1)(ℜc− 2ℜb− 1)} 1
2

]
≤ 1 +

(A−B)|τ |
1 + |B|

(3.23)

is satisfied, then z 2F1(a, b; c; z) ∈ Rτ (A,B).

Proof. We know

z 2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n(1)n

zn+1 = z +
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
zn.

Therefore, by Lemma 3, it is sufficient to show that

(3.24) S5 =

∞∑
n=2

n
|(a)n−1∥(b)n−1|
(ℜc)n−1(1)n−1

≤ (A−B)|τ |
1 + |B|

.

As in our demonstration of Theorem 3 we can write S5 equivalently as

S5 =
|a∥b|
ℜc

∞∑
n=0

|(a+ 1)n||(b+ 1)n|
(ℜc+ 1)n(1)n

+
∞∑

n=0

|(a)n||(b)n|
(ℜc)n(1)n

− 1.

Applications of Cauchy’s inequality followed by the Gauss summation formula
(1.5) and the relation Γ( z̄ ) = Γ(z) give

S5 ≤ |ab|
ℜc

[{ ∞∑
n=0

(a+ 1)n(ā+ 1)n
(ℜc+ 1)n(1)n

} 1
2
{ ∞∑

n=0

(b+ 1)n(b̄+ 1)n
(ℜc+ 1)n(1)n

} 1
2
]

+
{ ∞∑

n=0

(a)n(ā)n
(ℜc)n(1)n

} 1
2
{ ∞∑

n=0

(b)n(b̄)n
(ℜc)n(1)n

} 1
2 − 1

=
|ab|
ℜc

[
{ 2F1(a+ 1, ā+ 1;ℜc+ 1; 1)} 1

2 { 2F1(b+ 1, b̄+ 1;ℜc+ 1; 1)} 1
2

]
+ { 2F1(a, ā;ℜc; 1)}

1
2 { 2F1(b, b̄;ℜc; 1)}

1
2 − 1

=
Γ(ℜc){Γ(ℜc− 2ℜa− 1)Γ(ℜc− 2ℜb− 1)} 1

2

|Γ(ℜc− a)||Γ(ℜc− b)|

×
[
|ab|+ {(ℜc− 2ℜa− 1)(ℜc− 2ℜb− 1)} 1

2

]
− 1.
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Thus, in view of (3.24), if the inequality (3.23) is satisfied, then z 2F1(a, b; c; z) ∈
Rτ (A,B). The proof of Theorem 5 is complete. □
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