• Title/Summary/Keyword: Clock

Search Result 2,249, Processing Time 0.026 seconds

A Localization Using Multiple Round Trip Times in Wireless Sensor Networks (무선 센서 네트워크에서 다중 왕복시간차를 이용한 위치측정)

  • Jang, Sang-Wook;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.370-378
    • /
    • 2007
  • In wireless sensor networks (WSNs), thousands of sensors are often deployed in a hostile environment. In such an environment, WSNs can be applied to various applications by using the absolute or relative location information of the sensors. Until now, the time-of-arrival (TOA) based localization method has been considered most accurate. In the TOA method, however, inaccuracy in distance estimation is caused by clock drift and clock skew between sensor nodes. To solve this problem, several numbers of periodic time synchronization methods were suggested while these methods introduced overheads to the packet traffic. In this paper, we propose a new localization method based on multiple round-trip times (RTOA) of a signal which gives more accurate distance and location estimation even in the presence of clock skew between sensor nodes. Our experimental results show that the Proposed RTOA method gives up to 93% more accurate location estimation.

Consideration of CTS using Efficient Buffer Insertion for SoC in Multiple Clock Domain (다중 클록 영역의 SoC를 위한 효율적인 버퍼삽입 방식의 CTS에 대한 고려)

  • Seo, Yong-Ho;Choi, Eui-Sun;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.643-653
    • /
    • 2012
  • In this paper, we consider a clock tree synthesis technique (CTS) based on buffer insertion method in the multiple clock domain. We propose some detail techniques about the preparing items and the practical method for implementing CTS. We also propose a post processing after CTS implementation. Until now, the buffer insertion-based CTS technique has been widely used, and this paper discusses especially it's practical technique to be applied in the commercial fields to develop ASIC and SoC. CTS is very dependent on the used tool. We use Astro of Synopsys and propose the empirical and theoretical information of the detail techniques for implementing CTS using this tool. We expect that the proposed technique becomes to be good guidelines to backend designers.

A Constant Pitch Based Time Alignment for Power Analysis with Random Clock Power Trace (전력분석 공격에서 랜덤클럭 전력신호에 대한 일정피치 기반의 시간적 정렬 방법)

  • Park, Young-Goo;Lee, Hoon-Jae;Moon, Sang-Jae
    • The KIPS Transactions:PartC
    • /
    • v.18C no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Power analysis attack on low-power consumed security devices such as smart cards is very powerful, but it is required that the correlation between the measured power signal and the mid-term estimated signal should be consistent in a time instant while running encryption algorithm. The power signals measured from the security device applying the random clock do not match the timing point of analysis, therefore random clock is used as counter measures against power analysis attacks. This paper propose a new constant pitch based time alignment for power analysis with random clock power trace. The proposed method neutralize the effects of random clock used to counter measure by aligning the irregular power signals with the time location and size using the constant pitch. Finally, we apply the proposed one to AES algorithm within randomly clocked environments to evaluate our method.

Evaluation of EtherCAT Clock Synchronization in Distributed Control Systems (분산 제어 시스템을 위한 EtherCAT 시계 동기화의 성능 평가)

  • Kim, Woonggy;Sung, Minyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.785-797
    • /
    • 2014
  • Support for the precise time synchronization of EtherCAT, known as distributed clock (DC), enables the design of highly synchronized operations in distributed real-time systems. This study evaluates the performance of the EtherCAT DC through extensive experiments in a real automation system. We constructed an EtherCAT control system using Xenomai and IgH EtherCAT stack, and analyzed the clock deviation for different devices in the network. The results of the evaluation revealed that the accuracy of the synchronized clock is affected by several factors such as the number of slave devices, period of drift compensation, and type of system time base. In particular, we found that careful decision regarding the system time base is required because it has a fundamental effect on the master operation, which results in significantly different performance characteristics.

The Synchronization Method of System Time Clock between Encoder and Decoder on MPEG-2 System Layer (MPEG-2 시스템계층의 엔코더와 디코더 간 System Time Clock 동기화 기법)

  • Seo Hee-Don;Kie Jae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1403-1410
    • /
    • 2005
  • The synchronization problem is directly related to the quality of service in multimedia communication and especially in real-time communication. In this study, we found the cause of clock fluctuation between encoder and decoder in MPEG-2 system layer was that the standard decoder design only considered a fixed time delay component. To solve it, we proposed Extended-SRTS algorithm, which uses STC as service clock by synchronizing transport stream. As the result, we can improve the effect of frequency-drift, time-varying-network-jitter and packing-jitter and so on And by virtue of this algorithm, we can make low the dependency of network clock, which makes easy to synchronize and connect transparently at the ends point, we expect the proposed algorithm can be widely applied to the field of real -time multimedia communications.

  • PDF

A New Simplified Clock Synchronization Algorithm for Indoor Positioning (실내측위를 위한 새로운 클락 동기 방안)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Seong-Woo;Lee, Chang-Bok;Kim, Young-Beom;Choe, Seong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.237-246
    • /
    • 2007
  • Clock Synchronization is one of the most basic factors to be considered when we implement an indoor synchronization network for indoor positioning. In this paper, we present a new synchronization algorithm which does not employ time stamps in order to reduce the hardware complexity and data overhead. In addition to that, we describe an algorithm that is designed to compensate the frequency drift giving an serious impact on the synchronization performance. The performance evaluation of the proposed algorithm is achieved by investigating MTIE (Maximum Time Interval Error) values through simulations. In the simulations, the frequency drift values of the practical oscillators are used. From the simulation results, it is investigated that we can achieve the synchronization performance under 10 ns when we use 1 second synchronization interval with 1 ns resolution and TCXOs (Tmperature Compensated Cristal Oscillators) both in the master clock and the slave clock.

3.125Gbps Reference-less Clock/Data Recovery using 4X Oversampling (레퍼런스 클록이 없는 3.125Gbps 4X 오버샘플링 클록/데이터 복원 회로)

  • Lee, Sung-Sop;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.28-33
    • /
    • 2006
  • An integrated 3.125Gbps clock and data recovery (CDR) circuit is presented. The circuit does not need a reference clock. It has a phase and frequency detector (PFD), which incorporates a bang-bang type 4X oversampling PD and a rotational frequency detector (FD). It also has a ring oscillator type VCO with four delay stages and three zero-offset charge pumps. With a proposed PD and m, the tracking range of 24% can be achieved. Experimental results show that the circuit is capable of recovering clock and data at rates of 3.125Gbps with 0.18 um CMOS technology. The measured recovered clock jitter (p-p) is about 14ps. The CDR has 1.8volt single power supply. The power dissipation is about 140mW.

Design of Low Power Current Memory Circuit based on Voltage Scaling (Voltage Scaling 기반의 저전력 전류메모리 회로 설계)

  • Yeo, Sung-Dae;Kim, Jong-Un;Cho, Tae-Il;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • A wireless communication system is required to be implemented with the low power circuits because it uses a battery having a limited energy. Therefore, the current mode circuit has been studied because it consumes constant power regardless of the frequency change. However, the clock-feedthrough problem is happened by leak of stored energy in memory operation. In this paper, we suggest the current memory circuit to minimize the clock-feedthrough problem and introduce a technique for ultra low power operation by inducing dynamic voltage scaling. The current memory circuit was designed with BSIM3 model of $0.35{\mu}m$ process and was operated in the near-threshold region. From the simulation result, the clock-feedthrough could be minimized when designing the memory MOS Width of $2{\mu}m$, the switch MOS Width of $0.3{\mu}m$ and dummy MOS Width of $13{\mu}m$ in 1MHz switching operation. The power consumption was calculated with $3.7{\mu}W$ at the supply voltage of 1.2 V, near-threshold voltage.

Reduction of the Number of Power States for High-level Power Models based on Clock Gating Enable Signals (클럭 게이팅 구동신호 기반 상위수준 전력모델의 전력 상태 수 감소)

  • Choi, Hosuk;Yi, Joonhwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.28-35
    • /
    • 2015
  • In this paper, we propose to identify redundant power states of high-level power model based on clock gating enable signals(CGENs) using dependencies of Boolean functions and structural dependencies of clock gating cells. Three functional dependencies between two CGENs, namely equvalence, inversion, and inclusion, are used. Functions of CGENs in a circuit are represented by binary decision diagrams (BDDs) and the functional relations are used to reduce the number of power states. The structural dependency appears when a clock gating cell drives another clock gating cells in a circuit. Automatic dependency checking algorithm has been proposed. The experimental results show the average number of power state is reduced by 59%.

A Low Power Current-Steering DAC Selecting Clock Enable Signal (선택적으로 클럭 신호를 입력하는 저 전력 전류구동 디지털-아날로그 변환기)

  • Yang, Byung-Do;Min, Jae-Joong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.39-45
    • /
    • 2011
  • This paper proposes a low power current-steering 10-bit DAC selecting clock enable signal. The proposed DAC reduces the clock power by cutting the clock signal to the current-source cells in wihich the data will not be changed. The proposed DAC was implemented using a 0.13${\mu}m$ CMOS process with $V_{DD}=1.2V$. Its core area is 0.21$mm^2$. It consumes 4.46mW at 1MHz signal frequency and 200MHz sampling rate. The clock power is reduced to 30.9% and 36.2% of a conventional DAC at 1.25MHz and 10MHz signal frequencies, respectively. The measured SFDRs are 72.8dB and 56.1dB at 1MHz and 50MHz signal frequencies, respectively.