• 제목/요약/키워드: Cascaded-folding

검색결과 7건 처리시간 0.023초

1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D 변환기의 설계 (Design of an 1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D Converter)

  • 정승휘;박재규;황상훈;송민규
    • 대한전자공학회논문지SD
    • /
    • 제43권5호
    • /
    • pp.1-10
    • /
    • 2006
  • 본 논문에서는, 1.8V 8-bit 500MSPS CMOS A/D 변환기를 제안한다. 8-bit 해상도, 고속의 샘플링과 입력 주파수, 그리고 저 전력을 구현하기 위하여 Cascaded-Folding Cascaded-Interpolation type으로 설계되었다. 또한 본 연구에서는 고속 동작의 문제점들을 해결하기 위하여 새로운 구조의 Digital Encoder, Reference Fluctuation을 보정하기 위한 회로, 비교기 자체의 Offset과 Feedthrough에 의한 오차를 최소화하기 위한 Averaging Resistor, SNR을 향상시키기 위한 Distributed Track & Hold를 설계하여 최종적으로 500MSPS의 A/D 변환기 출력 결과를 얻을 수가 있다. 본 연구에서는 1.8V의 공급전압을 가지는 $0.18{\mu}m$ 1-poly 5-metal N-well CMOS 공정을 사용하였고, 소비전력은 146mW로 Full Flash 변환기에 비해 낮음을 확인할 수 있었다. 실제 제작된 칩은 측정결과 500MSPS에서 SNDR은 약 43.72dB로 측정되었고, Static상태에서 INL과 DNL은 각각 ${\pm}1LSB$ 로 나타났다. 유효 칩 면적은 $1050um{\times}820um$의 면적을 갖는다.

1.8V 12-bit 10MSPS Folding/Interpolation CMOS Analog-to-Digital Converter의 설계 (Design of an 1.8V 12-bit 10MSPS Folding/Interpolation CMOS Analog-to-Digital Converter)

  • 손찬;김병일;황상훈;송민규
    • 대한전자공학회논문지SD
    • /
    • 제45권11호
    • /
    • pp.13-20
    • /
    • 2008
  • 본 논문에서는 1.8YV 12-bit 10MSPS CMOS A/D 변환기 (ADC)를 제안한다. 제안하는 ADC 는 12-bit의 고해상도를 구현하기 위해 even folding 기법을 이용한 Folding/Interpolation 구조로 설계하였다. ADC의 전체 구조는 2단으로 구성된 Folding/Interpolation 구조로써, 각각의 folding rate (FR)은 8을 적용하였고, interpolation rate (IR)은 $1^{st}$ stage 에서 8, $2^{nd}$ stage 에서 16을 적용하여 설계함으로써 고해상도를 만족시키기 위한 최적의 구조를 제안하였다. 또한 SNR 을 향상시키기 위하여 Folding/Interpolation 구조 자체를 cascaded 형태로 설계하였으며, distributed track and hold를 사용하였다. 제안하는 ADC는 $0.18{\mu}m$ 1-poly 4-metal n-well CMOS 공정을 사용하여 제작되었다. 시제품 ADC 는 측정결과 10MSPS 의 변환속도에서 약 46dB의 SNDR 성능특성을 보이며, 유효 칩 면적은 $2000{\mu}m{\times}1100{\mu}m$의 면적을 갖는다.

1.2V 10b 500MS/s 단일채널 폴딩 CMOS A/D 변환기 (An 1.2V 10b 500MS/s Single-Channel Folding CMOS ADC)

  • 문준호;박성현;송민규
    • 대한전자공학회논문지SD
    • /
    • 제48권1호
    • /
    • pp.14-21
    • /
    • 2011
  • 본 논문에서는 LTE-Advanced, Software defined radio(SRD)등 4G 이동통신 핵심기술에 응용 가능한 10b 500MS/s $0.13{\mu}m$ CMOS A/D 변환기(ADC)를 제안한다. 제안하는 AD는 저전력 특성을 만족하기 위해 특별한 보정기법을 포함하지 않는 단일 채널 형태로 설계되었으며, 500MS/s의 고속 변환속도를 만족하기 위해 폴딩 신호처리 기법을 사용하였다. 또한 하위 7b ADC의 높은 folding rate(FR)을 극복하기 위해 cascaded 형태의 폴딩 인터폴레이팅 기법을 적용하였으며, 폴딩 버스에서 발생하는 기생 커패시턴스에 의한 주파수 제한 및 전압이득 감소를 최소화하기 위해 folded cascode 출력단을 갖는 폴딩 증폭기를 설계하였다. 제안하는 ADC는 $0.13{\mu}m$ lP6M CMOS 공정으로 설계되었으며 유효면적은 $1.5mm^2$이다. 시제품 ADC의 INL, DNL은 10b 해상도에서 각각 2.95LSB, 1.24LSB 수준으로 측정되었으며, 입력주파수 9.27MHz, 500MHz의 변환속도에서 SNDR은 54.8dB, SFDR은 63.4dBc의 특성을 보인다. 1.2V(1.5V)의 전원전압에서 주변회로를 포함한 전체 ADC의 전력소모는 150mW ($300{\mu}W/MS/s$)이다.

홀수개의 폴딩 블록으로 구현된 1.2V 8-bit 800MSPS CMOS A/D 변환기 (An 1.2V 8-bit 800MSPS CMOS A/D Converter with an Odd Number of Folding Block)

  • 이동헌;문준호;송민규
    • 대한전자공학회논문지SD
    • /
    • 제47권7호
    • /
    • pp.61-69
    • /
    • 2010
  • 본 논문에서는 기존 폴딩 구조의 A/D 변환기(ADC)가 지닌 경계조건 비대칭 오차를 극복하기 위해 홀수개의 폴딩 블록을 사용한 1.2V 8b 800MSPS CMOS ADC를 제안한다. 제안하는 ADC는 저 전력소모를 위해 폴딩 구조에 저항열 인터폴레이션 기법을 적용하고, 높은 folding rate(FR=9)를 극복하기 위해 cascaded 폴딩 구조를 채택하였다. 특히 폴딩 ADC의 주된 문제인 아날로그 신호의 선형성 왜곡과 offset 오차 감소를 위해 홀수개의 폴딩 블록을 사용하는 신호처리 기법을 제안하였다. 또한 스위치를 사용한 ROM 구조의 인코더를 채택하여 $2^n$ 주기를 가지지 않는 디지털 코드를 일반적인 바이너리 코드로 출력하였다. 제안하는 ADC는 $0.13{\mu}m$ 1P6M CMOS 공정을 사용하여 설계되었으며, 유효면적은 870um$\times$980um이다. 입력주파수 10MHz, 800MHz의 변환속도에서 150mW의 낮은 전력소모 특성을 보이며 SNDR은 44.84dB (ENOB 7.15bit), SFDR은 52.17dB의 측정결과를 확인하였다.

A 10-b 500 MS/s CMOS Folding A/D Converter with a Hybrid Calibration and a Novel Digital Error Correction Logic

  • Jun, Joong-Won;Kim, Dae-Yun;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2012
  • A 10-b 500 MS/s A/D converter (ADC) with a hybrid calibration and error correction logic is described. The ADC employs a single-channel cascaded folding-interpolating architecture whose folding rate (FR) is 25 and interpolation rate (IR) is 8. To overcome the disadvantage of an offset error, we propose a hybrid self-calibration circuit at the open-loop amplifier. Further, a novel prevision digital error correction logic (DCL) for the folding ADC is also proposed. The ADC prototype using a 130 nm 1P6M CMOS has a DNL of ${\pm}0.8$ LSB and an INL of ${\pm}1.0$ LSB. The measured SNDR is 52.34-dB and SFDR is 62.04-dBc when the input frequency is 78.15 MHz at 500 MS/s conversion rate. The SNDR of the ADC is 7-dB higher than the same circuit without the proposed calibration. The effective chip area is $1.55mm^2$, and the power dissipates 300 mW including peripheral circuits, at a 1.2/1.5 V power supply.

자체보정 벡터 발생기를 이용한 7-bit 2GSPS A/D Converter의 설계 (Design of a 7-bit 2GSPS Folding/Interpolation A/D Converter with a Self-Calibrated Vector Generator)

  • 김승훈;김대윤;송민규
    • 대한전자공학회논문지SD
    • /
    • 제48권4호
    • /
    • pp.14-23
    • /
    • 2011
  • 본 논문에서는 자체보정 벡터 발생기(Self-Calibrated Vector Generator)를 이용한 7-bit 2GSPS folding/interpolation A/D Converter (ADC)를 제안한다. 제안하는 ADC는 2GSPS 의 고속 변환에 적합한 상위 2-bit, 하위 5-bit 인 분할구조로 설계 되었으며, 각각의 folding/interpolation rate는 4와 8로 설정되었다. 최대 1GHz의 높은 입력신호를 처리하기 위해 cascade 구조의 preprocessing block을 적용하였으며, 전압 구동 방식 interpolation 기법을 적용하여 기준전압 생성 시 발생하는 추가적인 전력소모를 최소화하였다. 또한, 새로운 개념의 자체보정 벡터 발생기를 이용하여 device mismatch, 기생 저항 및 커패시턴스 등에 의한 offset error를 최소화하였다. 제안하는 ADC는 1.2V 0.13um 1-poly 7-metal CMOS 공정을 사용하여 설계 되었으며 calibration 회로를 포함한 유효 칩 면적은 2.5$mm^2$ 이다. 측정 결과 입력 주파수 9MHz, sampling 주파수 2GHz에서 39.49dB의 SNDR 특성을 보이며, calibration 회로의 작동결과 약 3dB 정도의 SNDR의 상승을 확인하였다.

Folded Architecture for Digital Gammatone Filter Used in Speech Processor of Cochlear Implant

  • Karuppuswamy, Rajalakshmi;Arumugam, Kandaswamy;Swathi, Priya M.
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.697-705
    • /
    • 2013
  • Emerging trends in the area of digital very large scale integration (VLSI) signal processing can lead to a reduction in the cost of the cochlear implant. Digital signal processing algorithms are repetitively used in speech processors for filtering and encoding operations. The critical paths in these algorithms limit the performance of the speech processors. These algorithms must be transformed to accommodate processors designed to be high speed and have less area and low power. This can be realized by basing the design of the auditory filter banks for the processors on digital VLSI signal processing concepts. By applying a folding algorithm to the second-order digital gammatone filter (GTF), the number of multipliers is reduced from five to one and the number of adders is reduced from three to one, without changing the characteristics of the filter. Folded second-order filter sections are cascaded with three similar structures to realize the eighth-order digital GTF whose response is a close match to the human cochlea response. The silicon area is reduced from twenty to four multipliers and from twelve to four adders by using the folding architecture.