• Title/Summary/Keyword: Cascaded-folding

Search Result 7, Processing Time 0.024 seconds

Design of an 1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D Converter (1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D 변환기의 설계)

  • Jung Seung-Hwi;Park Jae-Kyu;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, an 1.8V 8-bit 500MSPS CMOS A/D Converter is proposed. In order to obtain the resolution of 8bits and high-speed operation, a Cascaded-Folding Cascaded-Interpolation type architecture is chosen. For the purpose of improving SNR, Cascaded-folding Cascaded-interpolation technique, distributed track and hold are included [1]. A novel folding circuit, a novel Digital Encoder, a circuit to reduce the Reference Fluctuation are proposed. The chip has been fabricated with a $0.18{\mu}m$ 1-poly 5-metal n-well CMOS technology. The effective chip area is $1050{\mu}m{\times}820{\mu}m$ and it dissipates about 146mW at 1.8V power supply. The INL and DNL are within ${\pm}1LSB$, respectively. The SNDR is about 43.72dB at 500MHz sampling frequency.

Design of an 1.8V 12-bit 10MSPS Folding/Interpolation CMOS Analog-to-Digital Converter (1.8V 12-bit 10MSPS Folding/Interpolation CMOS Analog-to-Digital Converter의 설계)

  • Son, Chan;Kim, Byung-Il;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.13-20
    • /
    • 2008
  • In this paper, an 1.8V 12-bit 10MSPS CMOS A/D converter (ADC) is described. The architecture of the proposed ADC is based on a folding and interpolation using an even folding technique. For the purpose of improving SNR, cascaded-folding cascaded-interpolation technique, distributed track and hold are adapted. Further, a digital encoder algorithm is proposed for efficient digital process. The chip has been fabricated with $0.18{\mu}m$ 1-poly 4-metal n-well CMOS technology. The effective chip area is $2000{\mu}m{\times}1100{\mu}m$ and it consumes about 250mW at 1.8V power supply. The measured SNDR is about 46dB at 10MHz sampling frequency.

An 1.2V 10b 500MS/s Single-Channel Folding CMOS ADC (1.2V 10b 500MS/s 단일채널 폴딩 CMOS A/D 변환기)

  • Moon, Jun-Ho;Park, Sung-Hyun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • A 10b 500MS/s $0.13{\mu}m$ CMOS ADC is proposed for 4G wireless communication systems such as a LTE-Advanced and SDR The ADC employs a calibration-free single-channel folding architecture for low power consumption and high speed conversion rate. In order to overcome the disadvantage of high folding rate, at the fine 7b ADC, a cascaded folding-interpolating technique is proposed. Further, a folding amplifier with the folded cascode output stage is also discussed in the block of folding bus, to improve the bandwidth limitation and voltage gain by parasitic capacitances. The chip has been fabricated with $0.13{\mu}m$ 1P6M CMOS technology, the effective chip area is $1.5mm^2$. The measured results of INL and DNL are within 2.95LSB and l.24LSB at 10b resolution, respectively. The SNDR is 54.8dB and SFDR is 63.4dBc when the input frequency is 9.27MHz at sampling frequency of 500MHz. The ADC consumes 150mW($300{\mu}W/MS/s$) including peripheral circuits at 500MS/s and 1.2V(1.5V) power supply.

An 1.2V 8-bit 800MSPS CMOS A/D Converter with an Odd Number of Folding Block (홀수개의 폴딩 블록으로 구현된 1.2V 8-bit 800MSPS CMOS A/D 변환기)

  • Lee, Dong-Heon;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.61-69
    • /
    • 2010
  • In this paper, an 1.2V 8b 800MSPS A/D Converter(ADC) with an odd number of folding block to overcome the asymmetrical boundary-condition error is described. The architecture of the proposed ADC is based on a cascaded folding architecture using resistive interpolation technique for low power consumption and high input frequency. The ADC employs a novel odd folding block to improve the distortion of signal linearity and to reduce the offset errors. In the digital block, furthermore, we use a ROM encoder to convert a none-$2^n$-period code into the binary code. The chip has been fabricated with an $0.13{\mu}m$ 1P6M CMOS technology. The effective chip area is $870{\mu}m\times980{\mu}m$. SNDR is 44.84dB (ENOB 7.15bit) and SFDR is 52.17dBc, when the input frequency is 10MHz at sampling frequency of 800MHz.

A 10-b 500 MS/s CMOS Folding A/D Converter with a Hybrid Calibration and a Novel Digital Error Correction Logic

  • Jun, Joong-Won;Kim, Dae-Yun;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A 10-b 500 MS/s A/D converter (ADC) with a hybrid calibration and error correction logic is described. The ADC employs a single-channel cascaded folding-interpolating architecture whose folding rate (FR) is 25 and interpolation rate (IR) is 8. To overcome the disadvantage of an offset error, we propose a hybrid self-calibration circuit at the open-loop amplifier. Further, a novel prevision digital error correction logic (DCL) for the folding ADC is also proposed. The ADC prototype using a 130 nm 1P6M CMOS has a DNL of ${\pm}0.8$ LSB and an INL of ${\pm}1.0$ LSB. The measured SNDR is 52.34-dB and SFDR is 62.04-dBc when the input frequency is 78.15 MHz at 500 MS/s conversion rate. The SNDR of the ADC is 7-dB higher than the same circuit without the proposed calibration. The effective chip area is $1.55mm^2$, and the power dissipates 300 mW including peripheral circuits, at a 1.2/1.5 V power supply.

Design of a 7-bit 2GSPS Folding/Interpolation A/D Converter with a Self-Calibrated Vector Generator (자체보정 벡터 발생기를 이용한 7-bit 2GSPS A/D Converter의 설계)

  • Kim, Seung-Hun;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.14-23
    • /
    • 2011
  • In this paper, a 7-bit 2GSPS folding/interpolation A/D Converter(ADC) with a Self-Calibrated Vector Generator is proposed. The ADC structure is based on a folding/interpolation architecture whose folding/interpolation rate is 4 and 8, respectively. A cascaded preprocessing block is not only used in order to drive the high input signal frequency, but the resistive interpolation is also used to reduce the power consumption. Based on a novel self-calibrated vector generator, further, offset errors due to device mismatch, parasitic resistors. and parasitic capacitance can be reduced. The chip has been fabricated with a 1.2V 0.13um 1-poly 7-metal CMOS technology. The effective chip area including the calibration circuit is 2.5$mm^2$. SNDR is about 39.49dB when the input frequency is 9MHz at 2GHz sampling frequency. The SNDR is improved by 3dB with the calibration circuit.

Folded Architecture for Digital Gammatone Filter Used in Speech Processor of Cochlear Implant

  • Karuppuswamy, Rajalakshmi;Arumugam, Kandaswamy;Swathi, Priya M.
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.697-705
    • /
    • 2013
  • Emerging trends in the area of digital very large scale integration (VLSI) signal processing can lead to a reduction in the cost of the cochlear implant. Digital signal processing algorithms are repetitively used in speech processors for filtering and encoding operations. The critical paths in these algorithms limit the performance of the speech processors. These algorithms must be transformed to accommodate processors designed to be high speed and have less area and low power. This can be realized by basing the design of the auditory filter banks for the processors on digital VLSI signal processing concepts. By applying a folding algorithm to the second-order digital gammatone filter (GTF), the number of multipliers is reduced from five to one and the number of adders is reduced from three to one, without changing the characteristics of the filter. Folded second-order filter sections are cascaded with three similar structures to realize the eighth-order digital GTF whose response is a close match to the human cochlea response. The silicon area is reduced from twenty to four multipliers and from twelve to four adders by using the folding architecture.