• Title/Summary/Keyword: CMOS technology

Search Result 1,917, Processing Time 0.026 seconds

2500 fps High-Speed Binary CMOS Image Sensor Using Gate/Body-Tied Type High-Sensitivity Photodetector (Gate/Body-Tied 구조의 고감도 광검출기를 이용한 2500 fps 고속 바이너리 CMOS 이미지센서)

  • Kim, Sang-Hwan;Kwen, Hyeunwoo;Jang, Juneyoung;Kim, Young-Mo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 2021
  • In this study, we propose a 2500 frame per second (fps) high-speed binary complementary metal oxide semiconductor (CMOS) image sensor using a gate/body-tied (GBT) p-channel metal oxide semiconductor field effect transistor-type high-speed photodetector. The GBT photodetector generates a photocurrent that is several hundred times larger than that of a conventional N+/P-substrate photodetector. By implementing an additional binary operation for the GBT photodetector with such high-sensitivity characteristics, a high-speed operation of approximately 2500 fps was confirmed through the output image. The circuit for binary operation was designed with a comparator and 1-bit memory. Therefore, the proposed binary CMOS image sensor does not require an additional analog-to-digital converter (ADC). The proposed 2500 fps high-speed operation binary CMOS image sensor was fabricated and measured using standard CMOS process.

A Low Power Single-End IR-UWB CMOS Receiver for 3~5 GHz Band Application (3~5 GHz 광대역 저전력 Single-Ended IR-UWB CMOS 수신기)

  • Ha, Min-Cheol;Park, Byung-Jun;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.657-663
    • /
    • 2009
  • A fully integrated single ended IR-UWB receiver is implemented using 0.18 ${\mu}m$ CMOS technology. The UWB receiver adopts the non-coherent architecture, which simplifies the RF architecture and reduces power consumption. The receiver consists of single-ended 2-stage LNAs, S2D, envelope detector, VGA, and comparator. The measured results show that sensitivity is -80.8 dBm at 1 Mbps and BER of $10^{-3}$. The receiver uses no external balun and the chip size is only $1.8{\times}0.9$ mm. The consumed current is very low with 13 mA at 1.8 V supply and the energy per bit performance is 23.4 nJ/bit.

A Design of Non-Coherent CMOS IR-UWB Receiver (비동기식 CMOS IR-UWB 수신기의 설계 및 제작)

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1045-1050
    • /
    • 2008
  • In this paper presents a CMOS RF receiver for IR-UWB wireless communications is presented. The impulse radio based UWB receiver adopts the non-coherent demodulation that simplifies the receiver architecture and reduces power consumption. The IR-UWB receiver consists of LNA, envelop detector, VGA, and comparator and the receiver including envelope detector, VGA, and comparator is fabricated on a single chip using $0.18{\mu}m$ CMOS technology. The measured sensitivity of IR-UWB receiver is down to -70 dBm and the BER $10^{-3}$, respectively at data rate 1 Mbps. The current consumption of IR-UWB receiver except external LNA is 5 mA at 1.8 V.

A 900 MHz ZigBee CMOS RF Transceiver Using Switchless Matching Network (무스위치 정합 네트워크를 이용한 900 MHz ZigBee CMOS RF 송수신기)

  • Jang, Won Il;Eo, Yun Seong;Park, Hyung Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.610-618
    • /
    • 2017
  • This paper presents a 868/915 MHz CMOS RF transceiver for the ZigBee application. Using a switchless matching network, the off chip switch is removed to achieve the low cost RF transceiver, and by the elimination of the switch's insertion loss we can achieve the benefits for the RF receiver's noise figure and transmitter's power efficiency at the given output power. The receiver is composed of low-noise amplifier, mixer, and baseband analog(BBA) circuit. The transmitter is composed of BBA, mixer, and driver amplifier. And, the integer N type frequency synthesizer is designed. The proposed ZigBee RF full transceiver is implemented on the $0.18{\mu}m$ CMOS technology. Measurement results show that the maximum gain and the noise figure of the receiver are 97.6 dB and 6.8 dB, respectively. The receiver consumes 32 mA in the receiver mode and the transmitter 33 mA in the transmission mode.

Full-Custom Design of a Serial Peripheral Interface Circuit for CMOS RFIC Testing (CMOS RF 집적회로 검증을 위한 직렬 주변 인터페이스 회로의 풀커스텀 설계)

  • Uhm, Jun-Whon;Lee, Un-Bong;Shin, Jae-Wook;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.68-73
    • /
    • 2009
  • This paper presents an easily modifiable structure of a serial peripheral interface (SPI) that is suitable for efficient testing of CMOS RF integrated circuits. The proposed SPI Is designed so that the address size and the accompanying software can be easily adjusted and modified according to the requirements and complexity of RF IC's under development. The hardware architecture and software algorithm to achieve the flexibility are described. The proposed SPI is fabricated in $0.13{\mu}m$ CMOS and successfully verified experimentally with a 2.7GHz fractional-N delta-sigma frequency synthesizer as a device under test.

A bio-sensor SoC Platform Using Carbon Nanotube Sensor Arrays (CNT 배열을 이용한 bio-sensor SoC 설계)

  • Chung, In-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.8-14
    • /
    • 2008
  • A fully CMOS-integrated carbon nanotube (CNT) sensor array is proposed. After the sensor chip is fabricated in commercial CMOS process, the CNTs network is formed on the top of the fabricated sensor chip through the room-temperature post-CMOS processes. When the resistance of the CNT is changed by the chemical reaction, the read-out circuit in the chip measures the charging time of the $R_{CNT}$-Capacitor. finally the information of measured frequency is converted to a digital code. The CMOS sensor chip was fabricated by standard 0.18um technology and the size of the $8{\times}8$ sensor array is $2mm{\times}2mn$. We have carried out an experiment detecting the biochemical material, glutamate, using this sensor chip. From the experiment the CMOS sensor chip shows the feasibility of sensor for the simultaneous detection of the various target materials.

Design of the CMOS Low-Voltage Regulation Circuit (CMOS 소자를 이용한 저전압 안정화 회로 설계)

  • Kim, Yeong-Min;Lee, Keun-Ho;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.124-127
    • /
    • 2002
  • A CMOS voltage regulation circuit for use at low-voltage is proposed. Circuits for a positive and for a negative current regulation are presented and are designed with commercial CMOS technology. The voltage regulation that is stable over ambient temperature variations is an important component of most data acquisition systems. These results are verified by the H-SPICE simulation $0.8{\mu}m$ parameter. As the result, the temperature dependency of output voltage is $0.57mV/^{\circ}C$ and the power dissipation is 1.8 mV on 5V supply voltage.

  • PDF

Low-Phase Noise 24-GHz CMOS Voltage-Controlled Oscillator (저 위상잡음 24-GHz CMOS 전압제어발진기)

  • Sung, Myeong-U;Kim, Shin-Gon;Kurbanov, Murod;Kil, Keun-Pil;Siddique, Abrar;Ryu, Jee-Youl;Noh, Seok-Ho;Yoon, Min;Ha, Deock-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.439-440
    • /
    • 2018
  • 본 논문에서는 차량용 레이더를 위한 저 위상잡음 24GHz CMOS 전압제어발진기를 제안한다. 이러한 회로는 1.8볼트 전원에서 동작하며, 낮은 위상잡음을 가지도록 설계되어 있다. 제안한 회로는 TSMC $0.13{\mu}m$ 고주파 CMOS 공정으로 구현되어 있다. 제안한 회로는 최근 발표된 연구결과에 비해 저 전력동작에서 저 위상잡음 및 낮은 잡음지수 특성을 보였다.

  • PDF

6 Mask LTPS CMOS Technology for AMLCD Application

  • Park, Soo-Jeong;Lee, Seok-Woo;Baek, Myoung-Kee;Yoo, Yong-Su;Kim, Chang-Yeon;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1071-1074
    • /
    • 2007
  • 6Mask CMOS process in low temperature polycrystalline silicon thin film transistors (poly-Si TFTs) has been developed and verified by manufacturing a 6Mask CMOS AMLCD panel. The novel 6Mask CMOS process is realized by eliminating the storage mask, gate mask and via open mask of conventional structure.

  • PDF

Design of Core Chip for 3.1Gb/s VCSEL Driver in 0.18㎛ CMOS (0.18㎛ CMOS 3.1Gb/s VCSEL Driver 코아 칩 설계)

  • Yang, Choong-Reol;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.88-95
    • /
    • 2013
  • We propose a novel driver circuit design using $0.18{\mu}m$ CMOS process technology that drives a 1550 nm high-speed VCSEL used in optical transceiver. We report a distinct improvement in bandwidth, voltage gain and eye diagram at 3.1Gb/s data rate in comparison with existing topology. In this paper, the design and layout of a 3.1Gb/s VCSEL driver for optical transceiver having arrayed multi-channel of integrating module is confirmed.