• Title/Summary/Keyword: CMOS driver

Search Result 170, Processing Time 0.03 seconds

A set of self-timed latches for high-speed VLSI

  • 강배선;전영현
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.534-537
    • /
    • 1998
  • In this paper, a set of novel self-timed latches are introduced and analyzed. These latches have no back-to-back connection as in conventional self-timed latch, and both inverting and noninerting outputs are evaluated simultaneously leading to thigher oepating frequencies. Power consumption of these latches ar ealso comparable to or less than that of conventional circuits. Novel type of cross-coupled inverter used in the proosed circuits implements static operatin without signal fighting with the main driver during signal transition. Proposed latches ar tested using a 0.6.mu.m triple-poly triple-metal n-well CMOS technology. The resutls indicates that proposed active-low sefl-timed latch (ALSTL) improves speed by 14-34% over conventional NAND SR latch, while in active-high self-timed latch (AHSTL) the improvements are 15-35% with less power as compared with corresponding NORA SR latch. These novel latches have been successfully implemented in a high-speed synchronous DRAM (SDRAM).

  • PDF

High Performance 2.2 inch Full-Color AMOLED Display for Mobile Phone

  • Kim, H.K.;Suh, M.S.;Lee, K.S.;Eum, G.M.;Chung, J.T.;Oh, C.Y.;Kim, B.H.;Chung, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.325-328
    • /
    • 2002
  • We developed a high performance 2.2" active matrix OLED display for IMT-2000 mobile phone. Scan and Data driver circuits were integrated on the glass substrate, using low temperature poly-Si(LTPS) TFT CMOS technology. High efficiency EL materials were employed to the panel for low power consumption. Peak luminescence of the panel was higher than 250cd/$m^2$ with power consumption of 200mW.

  • PDF

Poly-Si TFT LCD using p-channel TFTs

  • Ha, Yong-Min;Park, Jae-Deok;Yeo, Ju-Cheon;Kim, Dong-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.153-154
    • /
    • 2000
  • Large size poly-Si TFT-LCDs have been fabricated using p-channel thin film transistors for notebook PC application. We have designed and implemented the data sampling circuit and gate drivers that operate with low power consumption and high reliability. The gate driver has a redundant structure. We have realized the uniform and excellent display quality comparable to that of CMOS module. The reliability of panel is investigated and discussed by measuring the bias stability of transistors.

  • PDF

Current Saturation Improvement of Poly-Si TFTs for Analog Circuit Integration

  • Nam, Woo-Jin;Han, Sang-Myeon;Lee, Hye-Jin;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.289-292
    • /
    • 2005
  • New poly-Si TFTs have been proposed and fabricated in order to increases the output channel resistance ($r_o$). The counter-doped($p^+$) source is tied to the $n^+$ source and is extended into the channel region so that it employs the reverse bias depletion in the channel. As $V_{DS}$ is increased, the depletion width is increased and the effective channel width is reduced. Therefore, the output current saturates well and the $r_o$ is increased successfully. The proposed CMOS devices may improve the amplifier gain of data driver in active-matrix displays

  • PDF

A 6 Gbps/pin Low-Power Half-Duplex Active Cross-Coupled LVDS Transceiver with Switched Termination

  • Kim, Su-A;Kong, Bai-Sun;Lee, Chil-Gee;Kim, Chang-Hyun;Jun, Young-Hyun
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.612-614
    • /
    • 2008
  • A novel linear switched termination active cross-coupled low-voltage differential signaling (LVDS) transceiver operating at 1.5 GHz clock frequency is presented. On the transmitter side, an active cross-coupled linear output driver and a switched termination scheme are applied to achieve high speed with low current. On the receiver side, a shared pre-amplifier scheme is employed to reduce power consumption. The proposed LVDS transceiver implemented in an 80 nm CMOS process is successfully demonstrated to provide a data rate of 6 Gbps/pin, an output data window of 147 ps peak-to-peak, and a data swing of 196 mV. The power consumption is measured to be 4.2 mW/pin at 1.2 V.

  • PDF

A Design of 8-bit Switched-Capacitor Cyclic DAC with Mismatch Compensation of Capacitors (캐패시터 부정합 보정 기능을 가진 8비트 스위치-캐패시터 사이클릭 D/A 변환기 설계)

  • Yang, Sang-Hyeok;Song, Ji-Seop;Kim, Su-Ki;Lee, Kye-Shin;Lee, Yong-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.315-319
    • /
    • 2011
  • A switched-capacitor cyclic DAC scheme with mismatch compensation of capacitors is designed. In cyclic DAC, a little error between two capacitors is accumulated every cycle. As a result, the accumulated error influences the final analog output which is wrong data. Therefore, a mismatch compensation technique was proposed and the error can be effectively reduced, which alleviates the matching requirement. In order to verify the operation of the proposed DAC, an 8-bit switched-capacitor cyclic DAC is designed through HSPICE simulation and implemented through magna 0.18um standard CMOS process.

Comparative Analysis and Performance Evaluation of New Low-Power, Low-Noise, High-Speed CMOS LVDS I/O Circuits (저 전력, 저 잡음, 고속 CMOS LVDS I/O 회로에 대한 비교 분석 및 성능 평가)

  • Byun, Young-Yong;Kim, Tae-Woong;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • Due to the differential and low voltage swing, Low Voltage Differential Signaling(LVDS) has been widely used for high speed data transmission with low power consumption. This paper proposes new LVDS I/O interface circuits for more than 1.3 Gb/s operation. The LVDS receiver proposed in this paper utilizes a sense amp for the pre-amp instead of a conventional differential pre-amp. The proposed LVDS allows more than 1.3 Gb/s transmission speed with significantly reduced driver output voltage. Also, in order to further improve the power consumption and noise performance, this paper introduces an inductance impedance matching technique which can eliminate the termination resistor. A new form of unfolded impedance matching method has been developed to accomplish the impedance matching for LVDS receivers with a sense amplifier as well as with a differential amplifier. The proposed LVDS I/O circuits have been extensively simulated using HSPICE based on 0.35um TSMC CMOS technology. The simulation results show improved power gain and transmission rate by ${\sim}12%$ and ${\sim}18%$, respectively.

A 3.125Gb/s/ch Low-Power CMOS Transceiver with an LVDS Driver (LVDS 구동 회로를 이용한 3.125Gb/s/ch 저전력 CMOS 송수신기)

  • Ahn, Hee-Sun;Park, Won-Ki;Lee, Sung-Chul;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.7-13
    • /
    • 2009
  • This paper presents a multi-channel transceiver that achieves a data rate of 3.125Gb/s/ch. The LVDS is used because of its noise immunity and low power consumption. And a pre-emphasis circuit is also proposed to increase the transmitter speed. On the receiver side, a low-power CDR(clock and data recovery) using 1/4-rate clock based on dual-interpolator is proposed. The CDR generates needed additional clocks in each recovery part internally using only inverters. Therefore each part can be supplied with the same number of 1/4-rate clocks from a clock generator as in 1/2-rate clock method. Thus, the reduction of a clock frequency relaxes the speed limitation and lowers power dissipation. The prototype chip is comprised of two channels and was fabricated in a $0.18{\mu}m$ standard CMOS process. The output jitter of transmitter is loops, peak-to-peak(0.31UI) and the measured recovered clock jitter is 47.33ps, peak-to-peak which is equivalent to 3.7% of a clock period. The area of the chip is $3.5mm^2$ and the power consumption is about 119mW/ch.

Design of Low-Area and Low-Power 1-kbit EEPROM (저면적.저전력 1Kb EEPROM 설계)

  • Yu, Yi-Ning;Yang, Hui-Ling;Jin, Li-Yan;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.913-920
    • /
    • 2011
  • In this paper, a logic process based 1-kbit EEPROM IP for RFID tag chips of 900MHz is designed. The cell array of the designed 1-kbit EEPROM IP is arranged in a form of four blocks of 16 rows x 16 columns, that is in a two-dimensional arrangement of one-word EEPROM phantom cells. We can reduce the IP size by making four memory blocks share CG (control gate) and TG (tunnel gate) driver circuits. We propose a TG switch circuit to supply respective TG bias voltages according to operational modes and to keep voltages between devices within 5.5V in terms of reliability in order to share the TG driver circuit. Also, we can reduce the power consumption in the read mode by using a partial activation method to activate just one of four memory blocks. Furthermore, we can reduce the access time by making BL (bit line) switching times faster in the read mode from reduced number of cells connected to each column. We design and compare two 1-kbit EEPROM IPs, two blocks of 32 rows ${\times}$ 16 columns and four blocks of 16 rows ${\times}$ 16 columns, which use Tower's $0.18{\mu}m$ CMOS process. The four-block IP is smaller by 11.9% in the layout size and by 51% in the power consumption in the read mode than the two-block counterpart.

A Study on the Design of Green Mode Power Switch IC (그린 모드 파워 스위치 IC 설계에 관한 연구)

  • Lee, Woo-Ram;Son, Sang-Hee;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, Green Mode Power IC is designed to reduce the standby power. The proposed and designed IC works for the Switch Mode Power Supply(SMPS) and has the function of PWM. To reduce the unnecessary electric power, burst mode and skip mode section are introduced and controlled by external power MOSFET to diminish the standby power. The proposed IC is designed and simulated by KEC 30V-High Voltage 0.5um CMOS Process. The structure of proposed IC is composed of voltage regulator circuit, voltage reference circuit, UVLO(Under Voltage Lock out) circuit, Ibias circuit, green circuit, PWM circuit, OSC circuit, protection circuit, control circuit, and level & driver circuit. Measuring the current consumption of each block from the simulation results, 1.2942 mA of the summing consumption current from each block is calculated and ot proved that it is within the our design target of 1.3 mA. The current consumption of the proposed IC in this paper is less than a half of conventional ICs, and power consumption is reduced to the extent of 1W in standby mode. From the above results, we know that efficiency of proposed IC is superior to the previous IC.