• 제목/요약/키워드: CMOS digital integrated circuits

검색결과 33건 처리시간 0.028초

스위칭 네트워크와 디지털 접선 장치에서의 CMOS 게이트 어레이 IC 적용 (An Application of CMOS Gate Array Integrated Circuits to Switching Network and Digital Line Concentrator)

  • 박항구;박권철;조용현
    • 대한전자공학회논문지
    • /
    • 제24권4호
    • /
    • pp.652-657
    • /
    • 1987
  • This paper describes an application of CMOS Gate Array Integrated Cricuits to the implementation of three functional units: A Multiplexer, Time Switch, and Demultiplexer in the Switching Network and Digital Line Concentrator of TDX-1 system, which is a fully digital time division electronic switching system in Korea. The application of CMOS Gate Array Integrated Circuits significantly improves the overall system performance in terms of power consumption, cost, size, reliability, and timing margin, etc.

  • PDF

LOW DIRECT-PATH SHORT CIRCUIT CURRENT OF THE CMOS DIGITAL DRIVER CIRCUIT

  • Parnklang, Jirawath;Manasaprom, Ampaul;Laowanichpong, Nut
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.970-973
    • /
    • 2003
  • Abstract An idea to redce the direct-path short circuit current of the CMOS digital integrated circuit is present. The sample circuit model of the CMOS digital circuit is the CMOS current-control digital output driver circuit, which are also suitable for the low voltage supply integrated circuits as the simple digital inverter, are present in this title. The circuit consists of active MOS load as the current control source, which construct from the saturated n-channel and p-channel MOSFET and the general CMOS inverter circuits. The saturated MOSFET bias can control the output current and the frequency response of the circuit. The experimental results show that lower short circuit current control can make the lower frequency response of the circuit.

  • PDF

Inductive Switching Noise Suppression Technique for Mixed-Signal ICs Using Standard CMOS Digital Technology

  • Im, Hyungjin;Kim, Ki Hyuk
    • Journal of information and communication convergence engineering
    • /
    • 제14권4호
    • /
    • pp.268-271
    • /
    • 2016
  • An efficient inductive switching noise suppression technique for mixed-signal integrated circuits (ICs) using standard CMOS digital technology is proposed. The proposed design technique uses a parallel RC circuit, which provides a damping path for the switching noise. The proposed design technique is used for designing a mixed-signal circuit composed of a ring oscillator, a digital output buffer, and an analog noise sensor node for $0.13-{\mu}m$ CMOS digital IC technology. Simulation results show a 47% reduction in the on-chip inductive switching noise coupling from the noisy digital to the analog blocks in the same substrate without an additional propagation delay. The increased power consumption due to the damping resistor is only 67% of that of the conventional source damping technique. This design can be widely used for any kind of analog and high frequency digital mixed-signal circuits in CMOS technology

A High Density MIM Capacitor in a Standard CMOS Process

  • Iversen, Christian-Rye
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권3호
    • /
    • pp.189-192
    • /
    • 2001
  • A simple metal-insulator-metal (MIM) capacitor in a standard $0.25{\;}\mu\textrm{m}$ digital CMOS process is described. Using all six interconnect layers, this capacitor exploits both the lateral and vertical electrical fields to increase the capacitance density (capacitance per unit area). Compared to a conventional parallel plate capacitor in the four upper metal layers, this capacitor achieves lower parasitic substrate capacitance, and improves the capacitance density by a factor of 4. Measurements and an extracted model for the capacitor are also presented. Calculations, model and measurements agree very well.

  • PDF

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권3호
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

CDMA 이동통신 시스템용 기지국 변조기 ASIC 설계 및 구현 (Design and implementation of a base station modulator ASIC for CDMA cellular system)

  • 강인;현진일;차진종;김경수
    • 전자공학회논문지C
    • /
    • 제34C권2호
    • /
    • pp.1-11
    • /
    • 1997
  • We developed a base station modulator ASIC for CDMA digital cellular system. In CDMA digital cellular system, the modulation is performed by convolutional encoding and QPSK with spread spectrum. The function blocks of base station modulator are CRC, convolutional encoder, interleaver pseudo-moise scrambler, power control bit puncturing, walsh cover, QPSK, gain controller, combiner and multiplexer. Each function block was designed by the logic synthesis of VHDL codes. The VHDL code was described at register transfer level and the size of code is about 8,000 lines. The circuit simulation and logic simulation were performed by COMPASS tools. The chip (ES-C2212B CMB) contains 25,205 gates and 3 Kbit SRAM, and its chip size is 5.25 mm * 5,45 mm in 0.8 mm CMOS cell-based design technology. It is packaged in 68 pin PLCC and the power dissipation at 10MHz is 300 mW at 5V. The ASIC has been fully tested and successfully working on the CDMA base station system.

  • PDF

A 85-mW Multistandard Multiband CMOS Mobile TV Tuner for DVB-H/T, T-DMB, and ISDB-T Applications with FM Reception

  • Nam, Ilku;Bae, Jong-Dae;Moon, Hyunwon;Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권3호
    • /
    • pp.381-389
    • /
    • 2015
  • A fully integrated multistandard multiband CMOS mobile TV tuner with small silicon area and low power consumption is proposed for receiving multiple mobile digital TV signals and FM signal. In order to reduce the silicon area of the multistandard multiband receiver, other RF front-end circuits except LNAs are shared and a local oscillator (LO) signal generation architecture with a single VCO for a frequency synthesizer is proposed. To reduce the low frequency noise and the power consumption, a vertical NPN BJT is used in an analog baseband circuits. The RF tuner IC is implemented in a $0.18-{\mu}m$ CMOS technology. The RF tuner IC satisfies all specifications for DVB-H/T, T-DMB, and ISDB-T with a sufficient margin and a successful demonstration has been carried out for DVB-H/T, T-DMB, and ISDB-T with a digital demodulator.

0.18um CMOS 공정을 이용한 강압형 DC-DC 컨버터 보호회로 구현 및 측정 (Implementation and Measurement of Protection Circuits for Step-down DC-DC Converter Using 0.18um CMOS Process)

  • 송원주;송한정
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.265-271
    • /
    • 2018
  • DC-DC buck converter is a critical building block in the power management integrated circuit (PMIC) architecture for the portable devices such as cellular phone, personal digital assistance (PDA) because of its power efficiency over a wide range of conversion ratio. To ensure a safe operation, avoid unexpected damages and enhance the reliability of the converter, fully-integrated protection circuits such as over voltage protection (OVP), under voltage lock out (UVLO), startup, and thermal shutdown (TSD) blocks are designed. In this paper, these three fully-integrated protection circuit blocks are proposed for use in the DC-DC buck converter. The buck converter with proposed protection blocks is operated with a switching frequency of 1 MHz in continuous conduction mode (CCM). In order to verify the proposed scheme, the buck converter has been designed using a 180 nm CMOS technology. The UVLO circuit is designed to track the input voltage and turns on/off the buck converter when the input voltage is higher/lower than 2.6 V, respectively. The OVP circuit blocks the buck converter's operation when the input voltage is over 3.3 V, thereby preventing the destruction of the devices inside the controller IC. The TSD circuit shuts down the converter's operation when the temperature is over $85^{\circ}C$. In order to verify the proposed scheme, these protection circuits were firstly verified through the simulation in SPICE. The proposed protection circuits were then fabricated and the measured results showed a good matching with the simulation results.

A Low-Voltage High-Performance CMOS Feedforward AGC Circuit for Wideband Wireless Receivers

  • Alegre, Juan Pablo;Calvo, Belen;Celma, Santiago
    • ETRI Journal
    • /
    • 제30권5호
    • /
    • pp.729-734
    • /
    • 2008
  • Wireless communication systems, such as WLAN or Bluetooth receivers, employ preamble data to estimate the channel characteristics, introducing stringent settling-time constraints. This makes the use of traditional closed-loop feedback automatic gain control (AGC) circuits impractical for these applications. In this paper, a compact feedforward AGC circuit is proposed to obtain a fast-settling response. The AGC has been implemented in a 0.35 ${\mu}m$ standard CMOS technology. Supplied at 1.8 V, it operates with a power consumption of 1.6 mW at frequencies as high as 100 MHz, while its gain ranges from 0 dB to 21 dB in 3 dB steps through a digital word. The settling time of the circuit is below 0.25 ${\mu}s$.

  • PDF

LTPS TFT 논리회로 성능향상을 위한 전류모드 논리게이트의 설계 방법 (Design Method of Current Mode Logic Gates for High Performance LTPS TFT Digital Circuits)

  • 이준창;정주영
    • 대한전자공학회논문지SD
    • /
    • 제44권9호
    • /
    • pp.54-58
    • /
    • 2007
  • LTPS TFT의 개발과 성능 향상은 패널에 다양한 디지털 회로를 내장하는 SOP의 비약적 발전에 기여하였다. 본 논문에서는 일반적으로 적용되는 낮은 성능의 CMOS 논리게이트를 대체할 수 있는 전류모드 논리(CML) 게이트의 설계 방법을 소개한다. CML 인버터는 낮은 로직스윙, 빠른 응답 특성을 갖도록 설계할 수 있음을 보였으며 높은 소비전력의 단점도 동작 속도가 높아질수록 CMOS의 경우와 근사해졌다. 아울러 전류 구동능력을 키울 필요가 없는 까닭에 많은 수의 소자가 사용되지만 면적은 오히려 감소하는 것을 확인하였다. 특히 비반전 및 반전 출력이 동시에 생성되므로 noise immunity가 우수하다. 다수 입력을 갖는 NAND/AND 및 NOR/OR 게이트는 같은 회로에 입력신호를 바꾸어 구현할 수 있고 MUX와 XNOR/XOR 게이트도 같은 회로를 사용하여 구현할 수 있음을 보였다. 결론적으로 CML 게이트는 다양한 함수를 단순한 몇가지의 회로로 구성할 수 있으며 낮은 소비전력, 적은 면적, 개선된 동작속도 등을 동시에 추구할 수 있는 대안임을 확인하였다.