• Title/Summary/Keyword: CMOS amplifier

Search Result 614, Processing Time 0.03 seconds

Design of 900MHz CMOS RF Front-End IC for Digital TV Tuner (디지털 TV 튜너용 900MHz CMOS RF Front-End IC의 설계 및 구현)

  • 김성도;유현규;이상국
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.104-107
    • /
    • 2000
  • We designed and implemented the RFIC(RF front-end IC) for DTV(Digital TV) tuner. The DTV tuner RF front-end consists of low noise IF amplifier fur the amplification of 900 MHz RF signal and down conversion mixer for the RF signal to 44MHz IF conversion. The RFIC is implemented on ETRI 0.8u high resistive (2㎘ -cm) and evaluated by on wafer, packaged chip test. The gain and IIP3 of IF amplifier are 15㏈ and -6.6㏈m respectively. For the down conversion mixer gain and IIP3 are 13㏈ and -6.5㏈m. Operating voltage of the IF amplifier and the down mixer is 5V, current consumption are 13㎃ and 26㎃ respectively.

  • PDF

An Ultra-High Speed 1.7ns Access 1Mb CMOS SRAM macro

  • T.J. Song;E.K. Lim;J.J. Lim;Lee, Y.K.;Kim, M.G.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1559-1562
    • /
    • 2002
  • This paper describes a 0.13um ultra-high speed 1Mb CMOS SRAM macro with 1.7ns access time. It achieves ultra-high speed operation using two novel approaches. First, it uses process insensitive sense amplifier (Double-Equalized Sense Amplifier) which improves voltage offset by about 10 percent. Secondly, it uses new replica-based sense amplifier driver which improves bit- line evaluation time by about 10 percent compared to the conventional technique. The various memory macros can be generated automatically by using a compiler, word-bit size from 64kb to 1 Mb including repairable redundancy circuits.

  • PDF

Design of Ultra Wide-Band CMOS Low Noise Amplifier (광대역 CMOS 저잡음 증폭기 설계)

  • Moon Jeong-Ho;Jeong Moo-Il;Kim Yu-Sin;Lee Kwang-Du;Park Sang-Gyu;Han Sang-Min;Kim Young-Hwan;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.597-604
    • /
    • 2006
  • An ultrawideband(UWB) $3.1{\sim}5.15$ GHz low-noise amplifier employing a novel input matching circuit and feedback topology are presented. The proposed UWB amplifier is Implemented in $0.18{\mu}m$ RF CMOS technology. Measurements show a NF of $3.4{\sim}3.9$ dB, a power gain of $12.8{\sim}14$ dB, better than -9.4 of input matching and, an input IP3 of -1 dBm, while comsuming only 14.5 mW of power.

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

60dB 0.18μm CMOS Low-Power Programmable Gain Amplifier (60dB 0.18μm CMOS 저전력 이득 조절 증폭기)

  • Park, Seung-Hun;Lee, Jung-Hoon;Kim, Cheol-Hwan;Ryu, Jee-Youl
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.349-351
    • /
    • 2013
  • This research paper presents a low-power programmable gain amplifier (PGA) to facilitate signal processing of the detection of defects in steel plates. This circuit is able to adjust a gain in the range of 6 to 60dB in 7 steps using different signal types for various defects from hall sensors. The gain of PGA is designed by operating on-resistors of switches and passive components. The proposed PGA ($0.18{\mu}m$ CMOS process with 1.8 supply voltage) showed excellent gain error of less than -0.2dB, and low power consumption of 0.47mW.

  • PDF

A Fully Integrated Dual-Band WLP CMOS Power Amplifier for 802.11n WLAN Applications

  • Baek, Seungjun;Ahn, Hyunjin;Ryu, Hyunsik;Nam, Ilku;An, Deokgi;Choi, Doo-Hyouk;Byun, Mun-Sub;Jeong, Minsu;Kim, Bo-Eun;Lee, Ockgoo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 2017
  • A fully integrated dual-band CMOS power amplifier (PA) is developed for 802.11n WLAN applications using wafer-level package (WLP) technology. This paper presents a detailed design for the optimal impedance of dual-band PA (2 GHz/5 GHz PA) output transformers with low loss, which is provided by using 2:2 and 2:1 output transformers for the 2 GHz PA and the 5 GHz PA, respectively. In addition, several design issues in the dual-band PA design using WLP technology are addressed, and a design method is proposed. All considerations for the design of dual-band WLP PA are fully reflected in the design procedure. The 2 GHz WLP CMOS PA produces a saturated power of 26.3 dBm with a peak power-added efficiency (PAE) of 32.9%. The 5 GHz WLP CMOS PA produces a saturated power of 24.7 dBm with a PAE of 22.2%. The PA is tested using an 802.11n signal, which satisfies the stringent error vector magnitude (EVM) and mask requirements. It achieved an EVM of -28 dB at an output power of 19.5 dBm with a PAE of 13.1% at 2.45 GHz and an EVM of -28 dB at an output power of 18.1 dBm with a PAE of 8.9% at 5.8 GHz.

A Study on the Optimum Design for 3 V CMOS Operational Amplifier with Rail-to-Rail Input Stage and Output Stage (Rail-to-Rail 입력단과 출력단을 갖는 3 V CMOS 연산증폭기의 최적 설계에 관한 연구)

  • Park, Yong-Hee;Hwang, Sang-Joon;Sung, Man-Young;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1120-1122
    • /
    • 1995
  • This paper presents a 2-stage, simple, power-efficient 3V CMOS operational amplifier and its equation based design optimization. Because of its simple structure, it is very suitable as a VLSI library cell in analog/digital mixed-mode systems. The op-amp, which contains a constant-$g_m$ rail-to-rail input stage and a simple feedforward class-AB rail-to-rail output stage, is analyzed and the results are presented in the form of design equations and procedures, which provide an insight into the trade-offs among performance requirements. The results of SPICE simulations are shown to agree very welt with the use of design equations.

  • PDF

The Analysis of Input Power Matching for CMOS RF Low Noise Amplifier Design

  • Choi, Seung-Il;Oh, Tae-Hyun;Jhon, Hee-Sauk;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.941-944
    • /
    • 2005
  • In this paper, the analysis of input power matching for CMOS RF Low Noise Amplifier (LNA) design is introduced. With two input power matching techniques, the performance of LNAs is estimated according to gain and noise figure. This process can be expressed easily by theoretical method and using simulation. These analytical methods are useful in that they can provide enough insights for designing CMOS RF LNAs.

  • PDF

Design of RF Drive Amplifier with Functional Active Load for Linearity Compensation (기능성 능동부하를 이용한 선형보상 증폭기 설계)

  • Kim, Do-Gyun;Jung, In-Il;Hong, Nam-Pyo;Kim, Kwang-Jin;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.11-14
    • /
    • 2007
  • CMOS technology 기반의 고주파 직접회로에서는 충분한 이득과 안정성을 얻기 위하여 inductor, capacitor와 같은 수동 소자를 적절히 사용하여 설계하여야 한다. 이와 같은 수동 소자는 CMOS 집적회로에서 넓은 면적을 차지하는 단점이 있다. 고주파 증폭기의 부하를 능동 소자로 대체하게 되면 작은 크기로 회로의 제작이 가능하게 되나, 능동 소자는 수동 소자에 비하여 선형 특성이 좋지 않기 때문에 실제로 고주파 증폭기 설계에 사용하지 않는다. 본 논문에서는 이와 같은 능동 소자의 비선형성을 억제하면서, 동시에 회로의 크기를 줄일 수 있는 기능성 능동 부하를 적용한 고주파 증폭기를 설계하였다. 기능성 능동 부하는 2개의 MOSFET은 대칭으로 연결된 구조를 가지며, 하나의 MOSFET은 일반적인 load로 동작하며, 다른 MOSFET은 gate에 가변 전압을 인가함으로써, 증폭기의 전달함수를 변화시킬 수 있다. 이와 같은 특성을 이용하여 고주파 증폭기의 선형성을 보상할 수가 있다.

  • PDF

A 1.5V CMOS High Frequency Operational Amplifier for High Frequency Signal Processing Systems. (고주파 신호처리 시스템을 위한 1.5V CMOS 고주파 연산증폭기)

  • 박광민;김은성;김두용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1117-1120
    • /
    • 2003
  • In this paper, a 1.5V CMOS high frequency operational amplifier for high frequency signal processing systems is presented. For obtaining the high gain and the high unity gain frequency with the 1.5V supply voltage, the op-amp is designed with simple two stages which are consisting of the rail-to-rail differential input stage and the class-AB output stage. The designed op-amp operates with the 1.5V supply voltage, and shows well the push-pull class-AB operation. The simulation results show the DC open loop gain of 77dB and the unity gain frequency of 100MHz for the 1㏁ ┃ 10pF load. When the resistive load R$_1$. is varied from 1㏁ to 1 ㏀, the DC open loop gain decreases by only 4dB.

  • PDF